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J. Phys. A: Math. Gen. 24 (1991) 909-927. Printed in the UK 

REVIEW 

Computer simulations of cellular automata 

Dietrich Stauffer 
Institute for Theoretical Physics, Cologne University, D-5000 K 6 h  41, Germany 

Abstract. We review methods for large-scale simulations of cellular aatomta, in 
partidar with only one computer bit used per site. We summarize recent results for 
basic classification as well aa selected applicstions Like f e m m e e t i s m ,  flow through 
poroua media and biologically motivated automata 

This review waa received in December 1990 

1. Introduction 

In cellular automata, each site of a large lattice carries one or several spins, with 
each spin pointing either up or down. The orientation of the spin at  time t + 1 
is determined completely by the orientation of its neighbour spins at  time 2. We 
ignore in this review all probabilistic cellular automata where the neighbour spins 
determine only the probability of the centre spin to point up (as in the king model). 
We also take into account only nearest-neighbour interactions; neural networks with 
an infinite range of interaction were recently reviewed by Kohring with emphasis on 
large-scale simulations [I]. Most of the time we work with only one such spin per 
lattice site. Wolfram’s book [2] collects many older articles as well as new results in 
its appendices; Weisbuch’s selection of fields [3] is similar to ours. We assume here 
the more elementary aspects of cellular automata computing to be known; they were 
reviewed recently elsewhere [4]. We deal with generally programmable computerspnot 
with special purpose computers for cellular automata only [5]. 

In section 2 we therefore describe methods to increase speed and maximum lattice 
size by storing information in the single bits of a computer, and by treating these bits in 
parallel. Section 3 summarizes some results from both hasic classification and magnetic 
as well as hydrodynamic applications, and section 4 reviews some speculations about 
biological applications. 

2. Multispin coding 

2.1. One word per site 

Simple simulation methods use one computer word per spin; memory then can he 
saved on byte-oriented computers by using less bytes (two or one) for one spin than 
a!e used for a normal integer or real number. In a simple cubic L*L*L lattice it is 
practical [Z] t o  number the spins from 1 to L3 instead of labelling them with three 
indices varying from 1 to L each. The six nearest-neighbours of site i are then the sites 
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i-1,i+l,i-L,i+L,i-L2,i+Lz; on a triangularlattice, thefifth andsixth indexare 
replaced by i - L + I ,  i + L - I .  To avoid boundary conditions requiring IF conditions 
in the innermost loop, we also store the first plane of the lattice again in a buffer 
plane of sites L3 + 1 to L3 + L z ;  analogously the last plane of the true lattice is stored 
in a huffer plane with sites -L2 + 1 to  0. This method gives automatically helical 
boundary conditions which are sometimes better, sometimes worse, than periodic 
boundary conditions. In principle one should try to simulate lattices so large that the 
boundary effects no longer disturb the properties in the interior; in practice, of course, 
this aim cannot always be reached. 

This algorithm can easily be vectorized since the spins at  time t depend, in the 
traditional definition of cellular automata, only on the spin orientations at  the previous 
time step t - 1 (parallel or simultaneous updating). If we denote the old spin array 
and the newly determined spin array by different names, no vector dependency occurs 
ai ail, and automatic vectorizaiion shouid be possibie. After one sweep through the 
whole lattice, another simple loop is needed to  replace the old spin array by the new 
spin array. This latter simple loop can be avoided by suitable index manipulation if 
we use only one name for the old and the new spin array; but then vectorization may 
no longer be automatic, and programming errors are more likely. 

2.2. One bit  per site 

Much more efficient in both memory and CPU time requirements, but also more dif- 
ficult to program, are multispin coding techniques [6] where many different spins are 
stored in one computer word and are treated in parallel during the simulation. For 
example, a Clay computer stores 64 bits in one word. If we simulate in one dimension 
an infection process where each site becomes infected at  time t+ l  if at least one of 
its two neighbours (LEFT and RIGHT) is infected at  time t ,  we have a simple logical 
OR relation for the centre spin: CENTRE = LEFT .OR. RICET in FORTRAN. Here we 
take the spins as logical or Boolean variables, with TRUE corresponding to infection. 
Storing 64 different spins in one computer word like CENTRE, LEFT and RICET, the 
above FORTRAN statement deals at once with 64 such logical operations, provided for 
every spin in the word CENTRE the corresponding left and right lattice neighbours are 
stored in the corresponding bit positions of the words LEFT and RIGHT. (Usually these 
words like CENTRE have to be declared as integers.) 

Let us  take for this example a linear chain of 192 spins, stored in three words 
of 64 bits each: LEFT, CENTRE, RIGET. We take LEFT to contain spins 1,4,7,. . .,192, 
CENTRE to contain spins 2, 5, S,.. .,191, and RIGET to store spins 3,6,9,. . .,192. The 
SEIFT command is supposed to  shift a computer word circularly to  the left by a given 
number of bits; thus SHIFT(CENTRE.4) shifts the centre word by 4 bit positions to 
the left and appends the first (most significant) four bits of the original word to the 
end of the shifted word. A shift by 63 bits thus correspond to a right shift by one bit. 
With this operation the infection of the 192 sites proceeds by a n  innermost loop of 
three lines 

NLEFT = CENTRE. OR .SEIFT(RIGET, 63) 
NCENTRE = LEFT.OR.RIGHT 
NRICET = CENTRE. OR. SHIFT(LEFT, 1) 

where IILEFT, NCEBTRE and BRIGHT contain the new spin orientations. If we have,a 
longer chain of L = LL*64 spins, we need LL = L/64 words. The updating of the 
first and the last of these words needs shifts like for LEFT and RICET in the above 
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example, whereas the remaining LL - 2 words are treated normally, like the CENTRE 
word above. With such methods we automatically get periodic boundary conditions, 
e.g. the right neighbour of spin 192 is spin 1, and the left neighbour of spin 1 is spin 
192 in the above example. In more than one dimension, we give a special treatment 
to the multispin coding direction where 64 spins are stored in one word, whereas the 
other directions are treated with helical boundary conditions. 

While the above method saves memory by a factor of up to 64, and also a lot 
oi computer time, its disadvantage is that diiierent FORTRAN compiiers treat these 
bit-by-bit handling functions differently. Instead of LEFT. OR.RIGHT, an IBM main- 
frame may require IOR(LEFT,RIGHT), and the shift commands are not always circular 
shifts. The expected new FORTRAN standard may unify such functions (presumably 
by requiring IOR), but it will he a long time until i t  is implemented everywhere. Other 
languages like C may be more standardized in this respect. We now follow the way 
FORTRAN can be programmed on a Cray vecior computer; ihe inieresied user sbouid 
first try out how his compiler deals with shifts and bit-by-bit operations. 

For such simple rules in one dimension, speeds of 4.5 updates per nanosecond 
have been reached on one processor of a Cray-YMP [15]; if all 8 processors of that 
machine were used simultaneously (e.g. on 8 lattices with different initial conditions), 
the speed thus would have been 34 updates per nanosecond. In two dimensions, four 
p'u"""su'J U, a bray-' a'," D L A  rraClleu * a'lu " upu"Lea p"' ,,alluseLuIIu, rcapecbrvcly, 
for the Q2R automata to he discussed below [15, 161. Thus authors should always 
quote updates per processor, or give the number of processors used, when giving their 
computation speeds. 

The program of figure 1 for a three-dimensional OR updates nearly 1.4 sites per 
nanosecond on one Cray-YMP processor; i t  is also fully vectorizable. I t  starts with 
vz-rions sise-dependent parameters and a data !ine mntaizkg ?he i n p ~ t  va!ne e 
desired by the user. The first loop sets the spin array N equal to zero everywhere; note 
that this double loop has the indices I and 1 reversed to have the one going over the 
larger range as the innermost loop, a standard trick to increase efficiency for vector 
computers. 

In the next loop, the random number generator RANF sets each bit of the array 
with prohahi!i!,v p; otherwise t,he hit remains %em, (The integer part, of P+!-RAWF 

is 1 with probability P and 0 with probability 1-P, if the random numbers RANF are 
distributed homogeneously between 0 and 1.) To avoid vector dependencies the hit 
loop is the outermost loop. 

Now follows the main loop for times between 1 and HAX; our time unit is one sweep 
through the lattice. The five loops within this time loop have the following meaning. 
The first loop counts as HAG the number of computer words N which are not yet com- 
pletely infected. The second loop fills two buffer planes to ensure periodic boundary 
conditions in a simple way: the top buffer plane contains the information stored in 
the lowermost physical plane, and the bottom buffer plane repeats the information 
in the uppermost real plane. The third loop deals similarly with two buffers in the 
direction of multispin coding; here the same shift operations occur which were needed 
in the above example for LEFT and RIGHT. The fourth loop is the core of the program 
and deals with the logical OR over the six neighbours; that information is stored in the 
second array H; the six neighbours have the indices I =k 1 in the multispin direction, 
and J f i and J f L for the four other directions. In the fifth and last loop, after the 
calculation of all H words, the original array N is updated by the contents of the newly 
calculated H. 

_........ ^ ^  r-r. n . _ , n m *  --.. I . I " . _ , C _ _ _ _ I  ^I^^_.._._^_^_^_ _I __.__.I :..-I.. 
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4 

PARAMETER(LL= 7,LLl=LL*l,NBIT=64 L=LL*NEIT, 

DATA P,HAX.ISEED /0.001.100,123456789/ 
PRINT L P,MAX,ISEED 
PPl-P+1.0 
DO 1 I='l,LL 
DO 1 J=l,LS 
N(J,I)=O 
DO 2 NB-1,NBIT 

"s?JJEf:~~(sRIFT(a(~ ,I), 1) , I!!T(??!-RI!!P(!! > 
DO 3 ITIHE=l,MAX 

HAC-0 
DO 4 I.1,LL 
DO 4 J-1,LS 
IF(HAC .Eq. Oj STOP 
PRINT *, ITIHE,MAG 
DO 5 I=l,LL 

1 LS-L*L LP-LS+L,LN~-L-~~ 
DIMENSION N(-LH~ILP.O:LLI) ,H(LS,LL) 

CALL RA~ISE+(Z*ISEED-I) 

DO 2 IZ1,LL 

IF(NOT(N(1 1)I.NE.O) HAC=HAG+l 

DO 5 J = l , L  
N(J+LS,I)=N(l,I) 
NCJ-L ,I)-N(J-L+LS,I) 

DO 6 3=1,LS 

DO 7 I=l,LL 

N J 0 SHIFT N J,LL),NBIT-l) 
NIJ:LLij: SHIFTINIJ,i), 1) 

DO 7 JI1,LS 
M(J,I)= N(J I - l ~ . O R .N(J,I+l~.OR.N~J-l,l~.OR.N~J+l,I~ 

1 . OR:N(J-L, I! .OR.N(J+L, I) 
DO 8 IS1,LL 

DO 8 1.1 LS 
S! 2 ,  I! 4 2 ,  I)  

CONTINUE 
END 

Figure 1. Infection program (logical OR) for cubic lattice 

A disadvantage of the whole multispin coding approach is that very smalllattices 
(smaller than L = 64 in our case) cannot be simulated. For large lattices, on the other 
hand, memory requirements could be reduced even further by storing only suitable 
planes of the auxiliary array n, and not the whole lattice. Often one may also relax 
the requirement of fully parallel updating and thus have 1 depend directly on N. 

By simulating this trivial infection process the user may observe bow long it takes 
until all sites are infected. Since at every time step, each infected site infects all its 
neighbour, this maximum time is given by the biggest 'hole' of uninfected sites in the 
random initialization and increases logarithmically with lattice size [7]. For L = 896 
(one sample, one minute Cray processor time) I found that 31 sweeps are needed to  
infect the whole lattice if initially a random fraction of 0.1 per cent of all sites are 
infected. 

More complicated rules than this logical OR may need more complicated comhina- 
tions of logical operations. For example [E], if the centre spin is up if and only if at least 
m of its six neighbours are up, then one has to go through aii possibie combinations 
of up (or down) spins, and ends up with about twenty AND, OR and NOT. In principle, 
this computational effort increases exponentially with the number of neighbours to  be 
taken into account. (Computer time may increase somewhat less since, in the above 
simple example, memory access may be a bottleneck because only few operations are 
made with each word.) 

2.9. Many rules in one program 

On a lattice with K neighbour spins, of which each can be either up  or down, we can 
find C = 2K neighbour configurations. For each of these C configurations, the rule 
may require the centre spin to be up or to be down at the next time step; thus we have 
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in total R = 2c possible rules. On the simple cubic lattice with K = 6 neighbours 
we thus have R = 264, or more than lo”, different types of cellular automata. I was 
unable to write a separate computer program for each of them. Even on the square 
lattice, K = 4, where many of the R = 216 = 65536 differerent rules follow from each 
other by rotations or reflections of the lattice, or by spin inversion, it is hardly possible 
to write a separate algorithm for each of the 4856 different groups of rules. Thus a 
unified, though slower, algorithm is needed to treat numerous different rules by one 
program: the algorithm of da Silva and Herrmann 191. Again, each hit corresponds to 
a different site and neighbouring sites are stored in different computer words, just as 
above. 

We explain this algorithm for the square lattice and for a completely random mix- 
ture of automata rules (the Kauffman model, see last chapter). Thus a t  the beginning 
each site selects which of the 65536 rules on the square lattice with four neighbours 
it wants to obey, and then it sticks to this rule. Therefore one program has to ac- 
comodate all sites and all their rules. With the help of eight vertical and horizontal 
variables UlH, U I V ,  NZB, NZV, 1128, UZV, 8 3 8 ,  N 3 V ,  N48, U 4 V  we find out which of the 
sixteen possible neighbour configurations surrounds a given site. For example, N l V  is 
true if and only if both vertical neighbours are up, and A38 is true if the left neigh- 
bour is up and the right neighbour is down. The logical AND of N I V  and 1138 thus 
is true if and only if the right neighbour is down and all other three neighbours are 
up. Of the sixteen logical ANDs that  are formed by combining one of the four horizon- 
tal with one of the four vertical variables, exactly one is true and the fifteen others 
are false. The true combination indicates which neighhour configuration is realized. 
These statements make up the first third of the loop beginning with DO 11 I=l,L in 
our figure 2. 

In the second part of that loop we calculate the logical AUD of each of these sixteen 
combinations with the corresponding rule NR of that site; again of these sixteen ANDs, 
only one is true and all others are false. The logical or arithmetic sum (OR or +) of 
these sixteen ANDs thus gives the new value a. In the following loop 14 the old array N 
is updated by the newly calculated values H, just as in the simple infection program. 
(We are allowed to use arithmetic instead of logical sums here since only one of the 
sixteen terms to he summed over is one and all others are zero. Normally in one-bit- 
per-site multispin coding, neither additions nor multiplications are allowed since they 
mix different hits.) 

Also the other parts of the algorithm are similar to the infection program of fig- 
ure 1. The loop starting with DO 1 K=i, 16 is new: here we select randomly for each 
site separately the rule it wants to follow. Thus we go through all sixteen possible 
neighbour configurations, and with probability P we select the rule that  for this con- 
figuration the centre spin should point up; otherwise it points down. We thus have 
a random but deterministic mixture of all possible cellular automata. The last loop 
16 determines how many spins point up, using the function POPCNT which counts the 
number of up bits in a word. More interesting applications are discussed in our last 
chapter. The speed of this program, on one Cray-YMP processor (L = 1280), was 235 
updates per microsecond. 

Additional speed-ups to 285 sites per microsecond are possible if all sites obey the 
same rule, hut one program has to go through thousands of different cellular automata 
rules in order to classify them. Then we perform the arithmetic sum in the last part 
of loop 11 (figure 2) only over those neighhour configurations where the rule gives spin 
up. Thus loop l! is divided into two parts; in the first part we calculate and store N i V ,  
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Figure 2. Kadfman program (disorderedmixtureof allcellular automata) for square 
lattia. (H A Wisdunann speeded it up further to 260 updates per microsecond and 
on a Crsy processor by defining 118, 12B, 138 and 148 not through the opposite 
neighbours (i,j+1) and (i,j-l) but through the diagonal neighbours (it1.j) and 
(i,j+l) ofsite (i,j), These four variable arestoredandreuaedforaite (i+l,j+l). 
The vertical variables like 11V are no longer needed.) 

N18, . . ., N48 for each site; in the second part an outer loop over the sixteen neighbour 
configurations contains an innermost loop, executed only if the rule gives an up spin, 
running over all sites. The corresponding program has been published elsewhere [lo], 
and even a whole book has been devoted to such multispin coding methods [ll]. 
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2.4. Hydrodynamic cellular automata 

Thus far each site carried only one spin; now we deal with six to eight bits needed per 
site in connection with hydrodynamic cellular automata [12], also called lattice gases 
in the literature. A complete description of a classical fluid would let each molecule 
move under the influence of the forces the other molecule exert on it: molecular 
dynamics with Newton’s law. Such simulations consume lots of hours and megabytes, 
hut have been applied successfully to simple hydrodynamic problems [13]. Orders 
of magnitude faster, and also less memory consuming, is the simplified algorithm 
on the basis of complicated cellular automata. Molecules are allowed to travel with 
unit speed along the nearest-neighbour bonds of the triangular lattice; they scatter 
at  integer times on the lattice site if another molecule is present there at the same 
time. These scattering events preserve momentum and also (for some algorithms) 
energy and angular momentum. Various programming methods have been published 
in detail 114); we follow that of Kohring here, which is one of those storing 64 different 
sites in one Cray word and using only logical operations. 

The six directions leading to a given site are represented by six different bits stored 
in six different computer words X i ,  X2, X3, X4, X5 and X6 (clockwise or counterclock- 
wise). If the corresponding bit is one, an atom flies with unit velocity towards the 
site on this bond; for a zero bit, there is no particle coming at  this moment from this 
direction. Thus the density can vary. Collisions of two, three and four particles are 
taken into account; collisions resulting only in an exchange of particles (like head-on 
collisions of two a t o m  leading to reflection by 180 degrees) are ignored since we do 
not keep track of the identity of the particles. (To study dispersion, this simplification 
has to be avoided.) Figure 3 shows some of these collisions. In order to determine 
if in a twc-body collision the direction of the outgoing atoms is rotated positively 
or negatively compared with the incoming direction, a seventh bit is set initially at 
random to represent positive or negative angular momentum. This angular momen- 
tum determines how the direction of the outgoing particles is rotated compared to the 
incoming direction; after such a collision the angular momentum bit is reversed. 

Figure 3. Collisions in hydrodynamical cellular automata. The top velocities are  
rotated into the bottom velocities. 

TWD. and four-body collisions are impossible if at  least one pair of opposite di- 
rections has different status (e.g. if a particle is coming from the left but no particle 
f:om the :ight). Diffexxt bits are f o u ~ d  by ?he X!?. fxctio:: represextixg exc!usive=c;. 
Three-body collisions require directions 1, 3, 5 to haye the same status and also direc- 
tions 2, 4 , 6  to have the same status; again a positive XOR test destroys the possibility 
for a three-body collision. Thus with purely logical bit-by-bit operations we find a 
computer word COL telling us if a collision occurs. Again, COL stores 64 different sites, 
and neighbouring sites are stored in different words, just as in our earlier examples. 

With the help of the collision word COL, the angular momentum bit ABC, and the 
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incoming particle directions Xi, . . ., X6 we now can determine the outgoing directions 
Yl, Y6. For example, after a collision we have Y3 = X2 or = X4, depending on the 
angular momentum bit, whereas Y3 = X3 if no collision happened. The expression 

Y3 = (X2.AUD.COL.AUD.MIG)t(X4.AND.COL.AUD..UOT.ABC)t(X4.AND..NOT.COL) 

takes into account these mutually exclusive collision possibilities. Having thus calcu- 
lated the outgoing velocities Yl, . . ., Y6, the program then transfers the Y information 
about outgoing atoms into the new X variables for incoming atoms at the correspond- 
ing neighbour site; also the angular momentum bit must be reversed wherever a col- 
lision occured. One NEC-SX3 processor updated about 500 sites per microsecond 
with Kohring’s FOmTRAN program [14], whereas for all 65536 processors together of 
a Connection Machine the speed was about twice as high (assembler programming, 
Bhogosiao [1”1). 

3. Simulation results 

3.1. General classification 

Wolfram [Z] made the first systematic classification of one-dimensional cellular auto- 
mata, and that  classification can be regarded as the starting point of the scientific 
investigation of cellular automata in general, as opposed to studies of specific examples. 
Thus we start here with a short report on how to classify automata in two and three 
dimensions [17]. 

Wolfram distinguishes four classes according to the asymptopic behaviour after 
very long times: in class 1 the spins end up in a fixed point and are all parallel, 
limit cycles with short periods are observed in class 2, the chaotic class 3 has infinite 
periods, and propagating structures are seen in class 4. To make such a classification 
programmable in an automatic computer search for thousands of different rules, we 
need precise and mutually exclusive criteria replacing Wolfram’s general concepts. We 
divide the Wolfram classes 1 and 2 into subclasses. In this way five groups can be easily 
identified, with the sixth group containing all rules with non-identified asymptotic 
behaviour. 

Group 0: fixed point with all spins down 
Group 1: fixed point with all spins up 
Group 2: fixed point with some spins up, some spins down 
Group 3: oscillations of period two between all spins up and all spins down 
Group 4: oscillations of period two with some spins up and some spins down 
Group 5: all other behaviour. 

Initially we set randomly half of the spins up and half down, and use large lattices 
the length of which is not exactly a power of two (since powers of two lead to special 
behaviour). 

Results are available for chains (two neighbours), honeycomb (three neighbours), 
square (four neighbours), triangular (six neighbours), and simple cubic (six neigh- 
bours) lattices [17]. The larger the number of neighbours, the larger the fraction of 
rules belonging to the ‘unidentified’ class 5. For six neighbours, only one per cent of 
all rules fit into classes 0 to 4; of course, one per cent of 264 is still a huge number of 
rules. Of the 16 one-dimensional rules, on the other hand, two each belong to classes 
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0, 1, and 4. On a square lattice, the percentages for classes 0 to 4 are 2.8, 2.8, 0.1, 
0.7, and 2.1. (A large class for two to four neighbours with 16 per cent on the square 
lattice are the rules which lead to translations of the whole configuration; however, 
that class partially overlaps with oscillations of period two, if the spin configuration is 
checkerboard-like on a square lattice. Reference [21] speculates that Wolfram’s class 
4 quite generally might be class 2 with long transient behaviour.) 

Quite similar is the situation if we cheEk for stability against small perturba- 
tions [la]. In politics i t  is difficult to find out if one single decision (e.g. the selection 
of a presidential candidate) later leads t o  an observed result (e.g. the loss of the elec- 
tion). Computer scientists have i t  easier to investigate such relations between cause 
and effect: they simulate the system twice, once with the suspected cause and once 
without it, and then later compare the two resulting configurations to find the true 
effect of that cause. 

Thus we start from two lattices obeying exactly the same rules and having ex- 
actly the same initial configuration; only on one site or along one lattice line, the spin 
or the rule is changed in one replica compared to the other. Then the simulation 
proceeds, and we compare site-by-site the resulting configuration to see how this ini- 
tial ‘damage’ spreads later. Such damage spreading questions are very traditional in 
classical mechanics where an energy minimum corresponds to stability (damage dies 
out due to friction) and an energy maximum to instability (damage increases, often 
exponentially). Chaotic systems have the damage spreading over the whole lattice; 
for example, an apple dropping in a Californian orchard later changes the weather all 
over Europe, and even modifies much later the decay of the solar planetary system 
if the latter is chaotic. In this sense we call cellular automata stable, unstable, and 
marginal depending on whether the initially localized damage dies out, spreads over 
the lattice, or goes neither to zero nor to infinity. (Spreading over the lattice is usually 
measured by checking if the damage ‘cloud’, the set of sites different in a comparison 
of the two replicas, has touched the boundary of the lattice far away from the initial 
perturbation.) 

Simulations [I71 show that in chains, honeycomb and square lattices, about 60 
per cent of all rules are unstable; for six neighbours that percentage increases to 98.5. 
Thus the more neighbours one has  to deal with, the more chaotic is life. 

8.2. Q2R fermmagnetism 
Apart from hydrodynamic cellular automata, the most studied single rule [19] pre- 
sumably is Q2R. A spin is flipped if and only if it has as many up as down neighbours. 
These cellular automata give the spontaneous magnetization of the king model, ac- 
cording to present numerical knowledge. The condition for flipping spins means that 
the Ising interaction energy is not changed by a spin flip; thus Q2R is a microcanon- 
ical Ising model simulation, complementing the traditional canonical (Kawasaki) or 
grand canonical (Glauher) simulation methods for king magnets. In contrast to ear- 
lier hopes, it is not a particularly efficient way to find lsing properties, but instead it 
is useful for teaching and illustrates quantitatively certain basic ergodicity and irre- 
versibility problems of statistical physics. 

We can simulate Q2R by going sequentially or randomly through a lattice and 
flipping a spin if its number of up neighbours equals the number of down neighbours. 
Then the energy, measured through the number of antiparallel neighbour pairs, is con- 
stant,  If instead we use simultaneous updating as is customary for cellular automata, 
we have to be more cautious. Imagine, for example, a very long chain where all spins 
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except those a t  site 102 and 103 are up; spins 102 and 103 are down. Thus we have 
two broken bonds (antiparallel neighbours), between 101/102 and between 103/104. 
If we would update the spins sequentially, i.e. first spin 1, then 2, etc, we would flip 
101 and 102 and still end up with two broken bonds: energy conserved. Simultaneous 
updating, however, means that spins 101, 102, 103, and 104 are all flipped at the same 
time since they ‘do not yet know’ tha t  their neighbour is flipped, too. Then we end 
up with two isolated down spins 101 a i d  104 and four instead of two broken bonds: 
energy increased. Therefore in Q2R automata energy conservation has to  be restored 
by dividing the lattice into two sublattices, like even and odd spins, in such a way 
that spins on one sublattice are neighbours only to spins on the other sublattice. Thus 
one time step means that we first update one sublattice simultaneously, and then the 
other sublattice simnltaneously. In the above example, after updating the odd spins 
we have flipped 101 and 103, and then the even spins 100 and 102 are flipped. The 
whole iteration thus leads to a pair of down spins at sites 100 and 101, surrounded by 
up spins: two broken bonds as before, and energy is conserved. 

The model is not ergodic, i.e. even if we wait infinitely long we do not get through 
all possible states with the same energy. That  number, with roughly half spins up, 
varies as 2 N / f i  for a system of N spins. Q2R is a reversible rule, and thus after 
a certain time the system returns to  its starting Configuration, after which it repeats 
again and again the same time development: ‘limit cycle’. If the period of that cycle 
would be of the order 2 N ,  ergodicity would be ensured. Simulations gave [20], how- 
ever, a median limit cycle period varying only as 2N/4. Thus even if we start from 
a random distribution, corresponding to infinite temperature, we go only through an 
exponentially small fraction of the available phase space: no ergodicity. Neverthe- 
less the spontaneous magnetization comes out correctly as in the king model. Thus 
ergodicity is not needed to get good results. 

(For comparison with king results we start from a random configuration with a 
concentration p of up spins. The thermal energy or number of broken bonds is then 
proportional to p(1 -p), The temperature, on the other hand, can be found from this 
energy by traditional Ising model calculations. In this way, the Curie temperature of 
the square lattice corresponds to a concentration p of 7.955 18 per cent.) 

Because of the reversible nature of the spin flip rule we see a similarity to  New- 
ton’s law of motion, where also no time arrow is preferred: flipping Q2R spins or 
letting billard balls collide is a reversible process. Nevertheless, molecular dynamics 
simulations of many particles lead to irreversible relaxation into an equilibrium, and 
simulation of Q2R automata also lets the magnetization relax towards its Ising equi- 
librium value. How is this contradiction solved: the period after which Q2R returns 
to its initial configuration increases exponentially with N, though not as 2 N .  And 
for N = loz4, the period 2N/4, is much longer than the age of the universe. However, 
for small systems, particularly for p below 0.5, the return to the initial random d i s  
tribution is easily observable [20] because of the discrete nature of cellular automata 
and the lack of any rounding errors which plague molecular dynamics studies. Thus 
for small systems one can study explicitly that the second law of thermodynamics is 
violated; it is an approximation valid only for large systems. 

In other aspects Q2R is a good teaching tool: its simulation requires little knowl- 
edge of traditional physics like probabilities proportional to exp(-E/kT). It can be 
studied on powerful pocket calculators and gives then a spontaneous magnetization 
for low enough p. 

Problems occur only if one desires great accuracy; then one realizes that relaxation 
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to equilibrium is very slow for p below the Curie point concentration (8 per cent for 
square lattice). We can quantify this non-critical slowing down by starting from a 
random configuration of concentration p and by measuring the time r after which the 
actual magnetization reaches the midpoint between the initial magnetization 2p- 1 and 
the final Ising magnetization. This time does not diverge for ordinary critical slowing 
down. For Q2R on the square lattice, our data in figure 4 show for decreasing p first a 
maximum of r near the Curie point of p = 8 per cent, followed by a minimum of r N 

lo3 near 7.6 per cent, and then for decreasing p the relaxation time T increases rapidly 
to reach 4 to 5 million at  5 per cent. (This interval in concentrations corresponds to 
temperatures a few per cent below the Curie temperature.) A Vogel-Fulcher law like 
for glasses would predict 

o( econstl(P--P,) 

and indeed figure 4 at first suggests such a behaviour with po near 3 per cent. Closer 
inspection, however, indicates a possibly s-shaped curve, instead of a straight line, for 
the data plotted in figure 4, and thus tliis apparent dynamical transition at  3 per cent 
may be shifted downwards to lower concentrations, perhaps to p = 0. 

. 1 4  I n , , n , , , , , , , , , , ,  

ti+++ 
++ 

P 
Figure 4. Relaxation time T against initial concentration p for Q2R on the sqnare 
lattice. We plot l / l n ( ~ )  againat p. 

Such effective phase transitions, which shift slightly towards p = 0 (or p = 1) if 
the computing effort is increased exponentially, are also known from bootstrap perco- 
lation [E], where a threshold may go to zero with some negative power of the log(N) 
only. Similar to the above-mentioned problem with the second law of thermodynam- 
ics, it may then physically be more relevant to study the effective transition at a finite 
po than the mathematically exact limit for infinite times or systems. Obviously, times 
and sizes larger than those of the universe correspond to sound mathematics but not 
to good physics: for a physicist, the logarithm of infinity is below 100. 

Other criteria have also given effective transitions near a few per cent initial con- 
centration of up spins; some of these transitions seem to vanish logarithmically while 
others do not [22]. No clear picture has yet emerged. From the practical point of view 
it is remarkable that the slow relaxation into equilibrium at low p can be avoided if 
one starts with a normal Ising model simulation (Glauber-Metropolis) and lets QZR 
run only after equilibration [23]. 
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From the technical point of view, Q2R was one of the first cases where the one- 
bit-per-site technique was applied (Herrmann IS]). If the four computer word I , J , K , K  
contain the four neighbours of a site (with 64 sites in each of the 64 bits), then 

((I.XOR.J).AND.(K.XOR.K)) .OR. ((I.XOR.K).bND.(J.XOR.K)) 

is the condition to  flip the centre spin. A fully vectorized program reaches 1.7 up- 
dates per nanosecond on one Cray-YMP processor, with the program published else- ... L..-,. mi "- ~ -:.....ix~~-- -c ".. ___"__ 9- __--___ 
nllrlr LA', aa n u'LLlp"'Lc*.y1u" U, l l r l l I I I * L L L L I  D p L U ( j l n 1 r r .  

9.9. Hydrodynamic cellular automata 

The hydrodynamical methods described at the end of the first section have been 
applied to a variety of two-dimensional flow problems, and generalized to more com- 
plicated models and to  three dimensions. On the fundamental side, the viscosity of 
two-dimensional fluids was shown numerically [25] t o  diverge logarithmically with sys- 
tem size, as predicted theoretically long before. In this sense the cellular automata 
approach is superior to the application of Navier-Stokes equations since there one 
assumes the existence of a finite viscosity. On the other hand, very large velocities 
(large Reynolds numbers for turbulence) cannot be treated correctly by the automata 
method. 

For low velocities, the flow through porous media seems to be a good field of 
application [ZS] where traditional methods work less well. If the open pore space is 
no longer geometrically connected, then no flow is possible at  all; however, already 
far away from this percolation threshold, the tortuosity of connected paths of pores 
is so high that the hydrodynamic permeability is strongly reduced compared to that 
in  free flow. (The permeability basically is the ratio of hydrodynamic current to 
pressure gradient according to Darcy's iaw.) For specific well defined geometries, 
good agreement of laboratory and computer experiments was obtained. 

In three dimensions, asimple cubic lattice does not work well, and instead normally 
a projection of a four-dimensional face-centred lattice is used [27]. Nevertheless, speeds 
of 30 to 40 updates per microsecond on one Cray processor were obtained. However, 
realistic applications to the flow of oil through a porous medium are quite difficult. If 
we require the sand grain radius to be at ieast hundred times bigger than the moiecuiar 
size (lattice constant) and at least ten times smaller than the channel width, then we 
need lattices at least of size 10003 and thus computer times three orders of magnitude 
above present typical simulations. Future 'teraflop' machines would have here a nice 
field of practical applications, since they cost about us much as a single offshore oil 
drilling attempt. 

i n e  above simuiations worked with one type or' moiecuie. Two-iiuid modeis have 
also been studied [28], to simulate oil-water mixtures or spinodal decomposition. We 
refer to a recent conference for more details and applications 1291. 

-. 

4. Biologically motivated cellular automata 

4.1. Kauffman model 

The Kauffman model was invented [30] to simulate the interaction of biological genes. 
Humans have of the order of N = lo5 different genes; these genes are the same in each 
different cell of our body. However, genes can be turned on (spin up) or off (spin down) 
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according to interactions between them. In total this leads to ZN possible different 
genetic setups. In reality, we have only of the order of 1000 different cell types, and a 
good model should explain why only one thousand of the huge number of possibilities 
are realized. 

Living beings differ from Intel 860 chips in that they are not mass-produced in 
automated factories. Thus the interactions between different genes should be much 
more random than between computer parts. Kauffman [30] thus aasumes that each 
gene seiecis randomiy which oi the many pogsibie ruies for ceiiuiar automata it wants 
to obey. If each gene is influenced by I( = 4 neighbours, then we have 216 = 65536 
possible rules, and thus most of the N = lo5 genes can follow a different rule each. 
Once selected randomly, these rules are fixed forever, and thus the system ends up in 
limit cycles. Kauffman identifies the different limit cycles a system can have with the 
different cell types your body or mine has (brain cells, fat cells, . . .) and finds their 
number io increase oniy as viv 101 Tf inieracting genes, as desired. 

Mutations are random changes of a gene or of a rule by which the gene is influenced: 
A mutation that changes the whole genetic setup and e.g. changes a computational 
scientist into an exact mathematician is called a catastrophic mutation; biologically 
useful mutations have much less drastic effects. This question of the influence of 
mutations is just our ‘damage spreading’ of the general classification; in  fact, Kauffman 
seems to have introduced that question into biology long before physicists have studied 
it. (Statistical physics normally deals with averaged quantities like the density, not 
with particular configurations as needed for damage spreading studies.) 

Most of the early work on the Kauffman model dealt with an infinite range of 
interaction, as seems relevant biologically [31]; then each gene selects randomly which 
K out of the N - 1 other genes will influence its behaviour. Some sort of mean-field 

large K the system is unstable against damage spreading (catastrophic mutations), 
for small K it is stable, and K = 2 is the border case. 

More relevant to cellular automata are simulations of the Kauffman model on a 
lattice with nearest neighbour interactions. Then on a square lattice each site only 
selects which of the 65536 possible rules it wants to  obey; the neighbours are already 
fixed by the !attic? stroctore. !E one dimexion znd .!so GI! the honeycomh !&?ice, ?he 
system is always stable against mutations whereas for the square, triangular, cubic 
and four-dimensional hypercuhic lattice, catastrophic mutations are possible where 
the damage spreads over the whole lattice [33]. A program for the  square lattice was 
described in subsection 2.3. 

The probability for damage to spread can be reduced to zero by introducing a 
new parameter p, which here is no longer the initial concentration of up spins hut 
the probability of selecting a rule with the result: spin up. More precisely, during 
the initialization we select a new site to get its spin orientation and its rule. First 
by calling one random number we determine if the spin is up or down. Then we 
go through all possible neighbour Configurations, 16 for the square lattice ( I f  = 4 
neighbours), draw a new random number between 0 and 1 for each, and select for this 
neighbour configuration the result spin up if the random number is smaller than p; 
otherwise the result shall he down. Having dealt in  this way with all (16) neighbour 
configurations, we have finished the determination of the rule for this one site. Then 
we jump to  another site. 

Obviously, p and 1 - p are statistically equivalent, and we ignore p > 1/2. For 
p = 0 after one iteration all spins are down and remain so forever. Thus p = 0 makes 

G r  

t h e q  [,2] becalxs exac? :er i-fi-ite ra-ge irite:actie::s i:: i-fi-ite!y !a:@ system: Fc: 
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the system stable against damage spreading, even if at  p = 1/2 (the unbiased case we 
started with) damage could spread. At some threshold between 0 and 1/2 therefore a 
transition to unstable behaviour can occur. Life in this sense requires a p below the 
threshold p, to unstable behaviour. 

Numerical estimates for p ,  in the square lattice were plagued by strong finite-size 
effects and changed over three years [34] from 0.26 to 0.31; for size 6976 t 6976 the 
effective threshold was near 0.305. The estimates p ,  = 0.16, 0.12, and 0.08 for the 
I - :  "_-__ I - -  -:_-I- -..L:- --J L L:- I . . .~ : - - -  r w i  .._..:_ _.__ l_l..:. ...... u r - n g u i a ,  ~ I I L I ~ L C  GYYLC auu n y p c r ~ u u ~  w w w a  ~ a a j  irrrry DUI cviiiaiii ~yaser r ia i ic  errvrs 
since there the lattices sizes were smaller than in the square lattice. 

The threshold p ,  to unstable behaviour seems to be a second-order phase transition 
with critical phenomena: the probability that from a single damaged site in the lattice 
centre the damage spreads to the lattice boundary is zero below the threshold, non- 
zero above it, and goes to zero continuously if the threshold is approached from above. 

of damaged sites at  the moment the damage touches the boundary varies as LD in a 
lattice of linear dimension L; the time the damage needs to reach the boundary varies 
as LD'. On the square lattice, D is about 1.9, roughly compatible with the percolation 
fractal dimension [34], whereas D' is about 1.3. For other lattices we refer to [33]. 
Again, these other estimates may be less reliable since the square lattice estimates 

algorithm, a nice example of the need for supercomputing. 

cellular automata of a more complicated kind [35]. 

4. Z. Immunology 

there no phase transitions with critical phenomena have been found. The biological 
relevance of the cellular automata approximation is still controversial in this field where 
traditional descriptions mostly rely on first-order nonlinear differential equations as 
known from population dynamics. Nevertheless the application of statistical physics 
(percolation) ideas to immunology has a tradition of nearly 40 years [36]. 

!f :ye get inkenza  in ane :,:inter it is nn!ike!y we get the same sickness again in 
the same winter: we have become immune against this disease. Smallpox vaccination 
is one of the major successes of immunology. Many cell types and molecules play 
an important role in the immune response. Antibodies (A) come from bone-marrow 
derived lymphocytes (B) and neutralize the virus or other antigen (V), helper cells H 
and suppressor cells S regulate the immune response in a positive or negative way, 
ki!!er ce!!s !! z sy  st t ick the cwn b d y ,  inter!eukiE ms!ecc!ea I me&& !he connecticn 
between E and S, the AIDS virus D destroys the immune system, etc. Antibodies 
roughly correspond to one antigen like lock and key, and one may find a second type 
of antibodies which regard the first one as antigens, and so on in Jerne's network of 
lock-and-key relations. The review collection Theoretical Immunology [37] gives an 
overview over the different aspects and approaches of this field. 

The KIJT mode! [3R] p r e s ~ ~ & ! y  wm the first, ce!!u!ar ai~tomata description of the 
immune response; a larger variety of models was investigated only after a publication 
in, of course, J. Phys. A ;  Math. Gen. [39]. In all these cellular automata approxima- 
tions, the concentrations of various cell types can be either high (spin up, true, 1) 
or low (spin down, false, 0). The interactions between the various cell types can be 
defined by Boolean relations, like S = S .OR. E, meaning that at the next time step 

'Ph.." -:-I.+ -1 4h.. +h-.-h-IA C---&-I h..I.....: fC-:+--:..Ao....l:--\ -A- :- TI.* LA- 
I.&"" LL(jLl" _" Y I L C  " . . lnII"I",  L L L . C Y _ L  Y c L I - . I " " L  \'LL.L"C DlYC c,c- 'LL, ,6 ,  D S Y D  ,U. lllr ,,"LLL"CL 

fer E incremed f:em 1.5 ta 1.9 with the z.v-ai!&i!it;. nf bette: eam-pnte:s znd beite: 

Finally we mention that the Kauffman model is related to neural networks and 

N- -..-I -..--_"-I_.. +:_- h-- h--- -..-Ad -- C-- $--: --..-- l--:n..l "--".. I..+:--- 
I." L C a A  ~ " p " L ' u L " p Y Y L " 6  U- "Cri l l  L l r r Y r "  nu I-, ,U, L"LL"UL.U,Ug,LaL 0prL"rmul" lLr  DLLILT 
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the concentration of suppressor cells is high if and only if before there were lots of 
suppressor cells or lots of helper cells present. Sometimes an analogy is helpful which 
identifies the logical AND with a multiplication (*) and the logical OR with an addi- 
tion (+). The MOT function (negation) is symbolized by a bar on top of the symbol. 
Then E . O R .  (V  .AND. .NOT. S) is written as E + V + S ,  using that multiplication has 
precedence over addition. 

With this arithmetic notation of logical relations, the KUT model for normal im- 
mune response [38] with some simplifications [40] reads for antibodies A, suppressors 
S, helpers E, B cells B,  and virus V: 

A = V * B * E  S = E + S  H = E + v * S  B = H + ( v + B )  v = v + i .  

The initial condition is defined by the five spins A,  S, E, E, V; thus 25 = 32 different 
initial conditions are possible and are best dealt with by a very simple computer 
program. Each time step corresponds to lo2 hours in reality; thus in contrast to fluids 
and magnets, here computers really beat nature in speed. 

As a result we find five fixed points for the variables (ASEBV): (OOOOO), (OllOO), 
(OlllO), (01000) and (01001). The first case is the naive state where no immune 
ieaction has ever happened. The second and third fixed point correspond to the 
vaccinated or immune state; adding a virus V to these states will quickly lead back 
to the immune state (01110) where the virus is again destroyed. This is not the case 
for the fourth fixed point (01000) where an addition of virus leads immediately to 
the fifth fixed point (01001). Thus for these last two fixed points the body is not 
protected against infection: the virus or other antigen stays on. 

In autoimmune diseases like multiple sclerosis or diabetes mellitus, killer (effector) 
cells K of the immune system attack the own body as if that would be an antigen. For 
the simplest three-cell model involving X, E, and S only, Chowdhury 1401 let a computer 
search through all 3’ = 19683 possible models with positive, negative or missing 
interactions (including self-interactions) between the three cell types. Applying further 
constraints, like that helper cells should not suppress, the computer gave just one 
model: 

S = E  E = E + K  K = K + E + K * E * S  

which gave the desired fixed points (SEX) = (000) (healthy), (110) (immune), and 
(ill) (sick). Also fivecell models for autoimmunity were invented [39-411, which may 
be more realistic biologically. 

Several AIDS models were studied [42,43] where the HIV virus, abbreviated as D, 
destroys the helper cells (or T4  cells) of the immune system. The last model [43] uses 
interleukin molecules I as messengers from helper cells H to cytotoxic cells S: 

S = I  E = I + E  I = E  D = H + S .  

This dynamics gives for (SHID) the fixed points (0001) and (1111) as well as a n  
oscillation ofperiod two between (1101) and (0011). In the first fixed point, the virus 
D has completely destroyed the immune system, and the body will succumb to some 
normally not deadly disease like pneumonia. For the other states, the virus never 
vanishes but the immune system is still fully or partially present; these states could 
correspond to the many years of latency (correponding to about lo3 iterations) after 
an infection with the AIDS virus before the full sickness breaks out. 
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However, the model does not allow for these metastable states to decay after 
thousand iterations to the true fixed point (0001). To allow such decay, the interleukin 
production I was allowed to fail with a low probability p, and then after strongly 
fluctuating times of the order of i /p  the final fixed point (0001) was always reached. 
Similar results were obtained when these logical equations were replaced by differential 
equations. (The decay of the metastable state through some assumed low probability 
may look somewhat ad hoc. There are cellular automata like Q2R which by themselves 
give very iong reiaxation times; see above. iiniortunaieiy in none oi the deterministic 
AIDS known to me were such long relaxation times found, not even on a lattice.) 

Cancer cells evade the immune system, perhaps by omitting or changing the cell 
surface antigens which are recognized by the killer cells K of the immune system. 
Thus a tumour cell T is assumed [44] to be in one of three states: with the normal 
surface antigen ( T i )  recognized by the killer cells, with a changed surface antigen (TZ), 
or without any such surface property (TO). The model repeats for the antibodies, 
suppressors, helpers, and B cells the equations of the KUT model above, and adds for 
the killer and the tumour cells: 

K = T i * E * S  T O = T O * m  

T i  = T i  * A  + E + B + K  + T O + T 2  

A simple program going through all 256 initial states of this eight-cell model is given 
in figure 5; the reader can easily change the interactions or even reduce the number of 
different cell types, now eight. This simulation gives eleven fixed points of which two 
have no tumour cells whereas in the  nine other fixed points the tumour cells survive 
and thus proliferate. 

In a similar spirit, a unified model [45] tries to combine normal immune response, 
autoimmune diseases, and AIDS. We start again from the usual KUT model with A ,  
S, E, B and V, where V now corresponds e.g. to pneumonia. To this model are added 
killer cells K attacking the ‘own’ body 0, and AIDS virus D. The dynamics is defined 
through 

T 2  = ( T 2 +  A +  E + B) *-. 

A = V * B * H  s=K+s a = [ ( v + o ) * S + i i j * B  
B = H * ( V + B )  V = V * I  K = 0 * E  * S. 

Without AIDS and autoimmune problems, when D and 0 are absent (false), we recover 
the standard K U T  model; presence of 0 may cause attacks from the killer cells, and 
the AIDS virus D immeditely destroys the helper cells. 

All these models are mean-field approximations in the sense that one concentration 
for one cell type is valid for the whole body. No geometry was involved. The other 
extreme is lattice models [7,40-5] with nearest-neighbour interactions, where at each 
lattice site we repeat the above model, and let neighbouring lattice sites interact with 
logical OR. Presumably the mean-field approach is good if the immune response is much 
slower than the spread of a cell type through the system, whereas in the opposite limit 
the lattice model is bettcr. The truth may be in  between, though closer t,o mean field. 

For such lattice models, one Cray-YMP processor typically updates slightly more 
than one cell per nanosecond, and lattices with more than hundred million sites were 
studied, using one-bit-per-cell methods similar to the other cellular automata. We 
just have to replace t by .AND. and + by .OR. when we translate the above immunity 
equations into FORTRAN. The program for cancer then looks similar to figure 5. These 
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C 8-CELL GENERAL IIDNNOLOCY PROGRAM 
2 CELL TYPES: l=~HTIBODY,Z=SUPPRESS3a.3;HEL?ER,~~E-CELL, 
C S=K=KILLER 6=TO 7=T1 8=T2 (3 TYPES OF T=TJHOR) 

P I R I W F T V P I  lur-a dAX;nO( . ... 
LO1 
DO 

I 
6 

I 

C HERE SI 

I IT 
N 

51 I )IT N 6 - IT0 

2 

\..- __, 
XCAL N(NC) ,M(NC) .IA,IS,IR.IB,IK,ITO ,IT1 .IT2 ,IDUH,FF 

)O 6 K-1 N6 1 INDEX-0 255 

M(K) -R~IFT(INDEX, K- 1) .AND. 1 

'ECJF!C MODEL OF NC DIFFERENT CELL TYPES - IT1.AND.IB.AND.IH 
= IH.OR.IS 
= (IT1.AND. .NDT.IS) .OR.IH 

l.OR.IB).AND.IH 
1 .AND. IH .AND. .NOT. IS) 
.AND..NOT.(ITl.OR.ITZ) 

;{:I 1 (IT2.OR.IDUM) .AND. .NOT. (IT0 .OR. IT1) 
FP= .TRUE. 
DO 2 K=1 NC 

IDUH - 1H.OR.IB.OR.IA 
ITl.AND..NOT.(IDUM.OR.ITO.OR.IT2.0R.IK) 

~- FP=FP:~ND_. .. .EPV.M(K)) 
"U , h=I,NL 

7 M(K)-N(K) 
8 IF(FP) GOT0 9 

PRINT 100, INDEX 
9 IFIX=O 

DO 4 K=1 NC 
4 IF(M(Kj) IFIX=IF: 
1 IF(IT.LE.MAX) PRIN: 
100 FORMAT( lX, 318,8L3) 

END 

[X+Z**(K-l) 
r 100. INDEX,IFIX,IT.M 

Figure 5. Cancer progc- for immunology (one site only) 

lattice sizes already approach the order of magnitude of a real immune system, and 
still allow a simulation much faster on a supercomputer than in reality. However, the 
biological significance of such lattice models is not clear at present. 

Of course, the biological significance of the whole cellular automata approach to 
immunity can also be questioned: a true cell concentration does not jump between 0 
and 1 only. But that  does not yet mean that this Boolean approximation is wrong. For 
example, t he  Earth is certainly not a point mass but nevertheless can be approximated 
quite well by a point if we discuss Kepler's laws. The hydrodynamic cellular automata 
are also unrealistic but nevertheless useful. And similar t o  hydrodynamics, it may take 
many years before the right modification of the cellular automata approach is found 
which gives a good model for immunity. 
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