
Computer simulations of cellular automata

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 909

(http://iopscience.iop.org/0305-4470/24/5/007)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 14:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 24 (1991) 909-927. Printed in the UK

REVIEW

Computer simulations of cellular automata

Dietrich Stauffer
Institute for Theoretical Physics, Cologne University, D-5000 K 6 h 41, Germany

Abstract. We review methods for large-scale simulations of cellular aatomta, in
partidar with only one computer bit used per site. We summarize recent results for
basic classification as well aa selected applicstions Like f e m m e e t i s m , flow through
poroua media and biologically motivated automata

This review waa received in December 1990

1. Introduction

In cellular automata, each site of a large lattice carries one or several spins, with
each spin pointing either up or down. The orientation of the spin at time t + 1
is determined completely by the orientation of its neighbour spins at time 2. We
ignore in this review all probabilistic cellular automata where the neighbour spins
determine only the probability of the centre spin to point up (as in the king model).
We also take into account only nearest-neighbour interactions; neural networks with
an infinite range of interaction were recently reviewed by Kohring with emphasis on
large-scale simulations [I]. Most of the time we work with only one such spin per
lattice site. Wolfram’s book [2] collects many older articles as well as new results in
its appendices; Weisbuch’s selection of fields [3] is similar to ours. We assume here
the more elementary aspects of cellular automata computing to be known; they were
reviewed recently elsewhere [4]. We deal with generally programmable computerspnot
with special purpose computers for cellular automata only [5].

In section 2 we therefore describe methods to increase speed and maximum lattice
size by storing information in the single bits of a computer, and by treating these bits in
parallel. Section 3 summarizes some results from both hasic classification and magnetic
as well as hydrodynamic applications, and section 4 reviews some speculations about
biological applications.

2. Multispin coding

2.1. One word per site

Simple simulation methods use one computer word per spin; memory then can he
saved on byte-oriented computers by using less bytes (two or one) for one spin than
a!e used for a normal integer or real number. In a simple cubic L*L*L lattice it is
practical [Z] t o number the spins from 1 to L3 instead of labelling them with three
indices varying from 1 to L each. The six nearest-neighbours of site i are then the sites

0305-4470/91/050909+19%~.50 @ 1991 IOP Publishins Ltd 909

910 D Staufcr

i-1,i+l,i-L,i+L,i-L2,i+Lz; on a triangularlattice, thefifth andsixth indexare
replaced by i - L + I , i + L - I . To avoid boundary conditions requiring IF conditions
in the innermost loop, we also store the first plane of the lattice again in a buffer
plane of sites L3 + 1 to L3 + L z ; analogously the last plane of the true lattice is stored
in a huffer plane with sites -L2 + 1 to 0. This method gives automatically helical
boundary conditions which are sometimes better, sometimes worse, than periodic
boundary conditions. In principle one should try to simulate lattices so large that the
boundary effects no longer disturb the properties in the interior; in practice, of course,
this aim cannot always be reached.

This algorithm can easily be vectorized since the spins at time t depend, in the
traditional definition of cellular automata, only on the spin orientations at the previous
time step t - 1 (parallel or simultaneous updating). If we denote the old spin array
and the newly determined spin array by different names, no vector dependency occurs
ai ail, and automatic vectorizaiion shouid be possibie. After one sweep through the
whole lattice, another simple loop is needed to replace the old spin array by the new
spin array. This latter simple loop can be avoided by suitable index manipulation if
we use only one name for the old and the new spin array; but then vectorization may
no longer be automatic, and programming errors are more likely.

2.2. One bit per site

Much more efficient in both memory and CPU time requirements, but also more dif-
ficult to program, are multispin coding techniques [6] where many different spins are
stored in one computer word and are treated in parallel during the simulation. For
example, a Clay computer stores 64 bits in one word. If we simulate in one dimension
an infection process where each site becomes infected at time t+ l if at least one of
its two neighbours (LEFT and RIGHT) is infected at time t , we have a simple logical
OR relation for the centre spin: CENTRE = LEFT .OR. RICET in FORTRAN. Here we
take the spins as logical or Boolean variables, with TRUE corresponding to infection.
Storing 64 different spins in one computer word like CENTRE, LEFT and RICET, the
above FORTRAN statement deals at once with 64 such logical operations, provided for
every spin in the word CENTRE the corresponding left and right lattice neighbours are
stored in the corresponding bit positions of the words LEFT and RIGHT. (Usually these
words like CENTRE have to be declared as integers.)

Let us take for this example a linear chain of 192 spins, stored in three words
of 64 bits each: LEFT, CENTRE, RIGET. We take LEFT to contain spins 1,4,7,. . .,192,
CENTRE to contain spins 2, 5, S,.. .,191, and RIGET to store spins 3,6,9,. . .,192. The
SEIFT command is supposed to shift a computer word circularly to the left by a given
number of bits; thus SHIFT(CENTRE.4) shifts the centre word by 4 bit positions to
the left and appends the first (most significant) four bits of the original word to the
end of the shifted word. A shift by 63 bits thus correspond to a right shift by one bit.
With this operation the infection of the 192 sites proceeds by a n innermost loop of
three lines

NLEFT = CENTRE. OR .SEIFT(RIGET, 63)
NCENTRE = LEFT.OR.RIGHT
NRICET = CENTRE. OR. SHIFT(LEFT, 1)

where IILEFT, NCEBTRE and BRIGHT contain the new spin orientations. If we have,a
longer chain of L = LL*64 spins, we need LL = L/64 words. The updating of the
first and the last of these words needs shifts like for LEFT and RICET in the above

Computer simulations of cellular automata 911

example, whereas the remaining LL - 2 words are treated normally, like the CENTRE
word above. With such methods we automatically get periodic boundary conditions,
e.g. the right neighbour of spin 192 is spin 1, and the left neighbour of spin 1 is spin
192 in the above example. In more than one dimension, we give a special treatment
to the multispin coding direction where 64 spins are stored in one word, whereas the
other directions are treated with helical boundary conditions.

While the above method saves memory by a factor of up to 64, and also a lot
oi computer time, its disadvantage is that diiierent FORTRAN compiiers treat these
bit-by-bit handling functions differently. Instead of LEFT. OR.RIGHT, an IBM main-
frame may require IOR(LEFT,RIGHT), and the shift commands are not always circular
shifts. The expected new FORTRAN standard may unify such functions (presumably
by requiring IOR), but it will he a long time until i t is implemented everywhere. Other
languages like C may be more standardized in this respect. We now follow the way
FORTRAN can be programmed on a Cray vecior computer; ihe inieresied user sbouid
first try out how his compiler deals with shifts and bit-by-bit operations.

For such simple rules in one dimension, speeds of 4.5 updates per nanosecond
have been reached on one processor of a Cray-YMP [15]; if all 8 processors of that
machine were used simultaneously (e.g. on 8 lattices with different initial conditions),
the speed thus would have been 34 updates per nanosecond. In two dimensions, four
p'u"""su'J U, a bray-' a'," D L A rraClleu * a'lu " upu"Lea p"' ,,alluseLuIIu, rcapecbrvcly,
for the Q2R automata to he discussed below [15, 161. Thus authors should always
quote updates per processor, or give the number of processors used, when giving their
computation speeds.

The program of figure 1 for a three-dimensional OR updates nearly 1.4 sites per
nanosecond on one Cray-YMP processor; i t is also fully vectorizable. I t starts with
vz-rions sise-dependent parameters and a data !ine mntaizkg ?he i n p ~ t va!ne e
desired by the user. The first loop sets the spin array N equal to zero everywhere; note
that this double loop has the indices I and 1 reversed to have the one going over the
larger range as the innermost loop, a standard trick to increase efficiency for vector
computers.

In the next loop, the random number generator RANF sets each bit of the array
with prohahi!i!,v p; otherwise t,he hit remains %em, (The integer part, of P+!-RAWF

is 1 with probability P and 0 with probability 1-P, if the random numbers RANF are
distributed homogeneously between 0 and 1.) To avoid vector dependencies the hit
loop is the outermost loop.

Now follows the main loop for times between 1 and HAX; our time unit is one sweep
through the lattice. The five loops within this time loop have the following meaning.
The first loop counts as HAG the number of computer words N which are not yet com-
pletely infected. The second loop fills two buffer planes to ensure periodic boundary
conditions in a simple way: the top buffer plane contains the information stored in
the lowermost physical plane, and the bottom buffer plane repeats the information
in the uppermost real plane. The third loop deals similarly with two buffers in the
direction of multispin coding; here the same shift operations occur which were needed
in the above example for LEFT and RIGHT. The fourth loop is the core of the program
and deals with the logical OR over the six neighbours; that information is stored in the
second array H; the six neighbours have the indices I =k 1 in the multispin direction,
and J f i and J f L for the four other directions. In the fifth and last loop, after the
calculation of all H words, the original array N is updated by the contents of the newly
calculated H.

_........ ^ ^ r-r. n . _ , n m * --.. I . I " . _ , C _ _ _ _ I ^I^^_.._._^_^_^_ _I __.__.I :..-I..

912 D Staufler

4

PARAMETER(LL= 7,LLl=LL*l,NBIT=64 L=LL*NEIT,

DATA P,HAX.ISEED /0.001.100,123456789/
PRINT L P,MAX,ISEED
PPl-P+1.0
DO 1 I='l,LL
DO 1 J=l,LS
N(J,I)=O
DO 2 NB-1,NBIT

"s?JJEf:~~(sRIFT(a(~ ,I), 1) , I!!T(??!-RI!!P(!! >
DO 3 ITIHE=l,MAX

HAC-0
DO 4 I.1,LL
DO 4 J-1,LS
IF(HAC .Eq. Oj STOP
PRINT *, ITIHE,MAG
DO 5 I=l,LL

1 LS-L*L LP-LS+L,LN~-L-~~
DIMENSION N(-LH~ILP.O:LLI) ,H(LS,LL)

CALL RA~ISE+(Z*ISEED-I)

DO 2 IZ1,LL

IF(NOT(N(1 1)I.NE.O) HAC=HAG+l

DO 5 J = l , L
N(J+LS,I)=N(l,I)
NCJ-L ,I)-N(J-L+LS,I)

DO 6 3=1,LS

DO 7 I=l,LL

N J 0 SHIFT N J,LL),NBIT-l)
NIJ:LLij: SHIFTINIJ,i), 1)

DO 7 JI1,LS
M(J,I)= N(J I - l ~ . O R .N(J,I+l~.OR.N~J-l,l~.OR.N~J+l,I~

1 . OR:N(J-L, I! .OR.N(J+L, I)
DO 8 IS1,LL

DO 8 1.1 LS
S! 2 , I! 4 2 , I)

CONTINUE
END

Figure 1. Infection program (logical OR) for cubic lattice

A disadvantage of the whole multispin coding approach is that very smalllattices
(smaller than L = 64 in our case) cannot be simulated. For large lattices, on the other
hand, memory requirements could be reduced even further by storing only suitable
planes of the auxiliary array n, and not the whole lattice. Often one may also relax
the requirement of fully parallel updating and thus have 1 depend directly on N.

By simulating this trivial infection process the user may observe bow long it takes
until all sites are infected. Since at every time step, each infected site infects all its
neighbour, this maximum time is given by the biggest 'hole' of uninfected sites in the
random initialization and increases logarithmically with lattice size [7]. For L = 896
(one sample, one minute Cray processor time) I found that 31 sweeps are needed to
infect the whole lattice if initially a random fraction of 0.1 per cent of all sites are
infected.

More complicated rules than this logical OR may need more complicated comhina-
tions of logical operations. For example [E], if the centre spin is up if and only if at least
m of its six neighbours are up, then one has to go through aii possibie combinations
of up (or down) spins, and ends up with about twenty AND, OR and NOT. In principle,
this computational effort increases exponentially with the number of neighbours to be
taken into account. (Computer time may increase somewhat less since, in the above
simple example, memory access may be a bottleneck because only few operations are
made with each word.)

2.9. Many rules in one program

On a lattice with K neighbour spins, of which each can be either up or down, we can
find C = 2K neighbour configurations. For each of these C configurations, the rule
may require the centre spin to be up or to be down at the next time step; thus we have

Compuier simulations of cellular automata 913

in total R = 2c possible rules. On the simple cubic lattice with K = 6 neighbours
we thus have R = 264, or more than lo”, different types of cellular automata. I was
unable to write a separate computer program for each of them. Even on the square
lattice, K = 4, where many of the R = 216 = 65536 differerent rules follow from each
other by rotations or reflections of the lattice, or by spin inversion, it is hardly possible
to write a separate algorithm for each of the 4856 different groups of rules. Thus a
unified, though slower, algorithm is needed to treat numerous different rules by one
program: the algorithm of da Silva and Herrmann 191. Again, each hit corresponds to
a different site and neighbouring sites are stored in different computer words, just as
above.

We explain this algorithm for the square lattice and for a completely random mix-
ture of automata rules (the Kauffman model, see last chapter). Thus a t the beginning
each site selects which of the 65536 rules on the square lattice with four neighbours
it wants to obey, and then it sticks to this rule. Therefore one program has to ac-
comodate all sites and all their rules. With the help of eight vertical and horizontal
variables UlH, U I V , NZB, NZV, 1128, UZV, 8 3 8 , N 3 V , N48, U 4 V we find out which of the
sixteen possible neighbour configurations surrounds a given site. For example, N l V is
true if and only if both vertical neighbours are up, and A38 is true if the left neigh-
bour is up and the right neighbour is down. The logical AND of N I V and 1138 thus
is true if and only if the right neighbour is down and all other three neighbours are
up. Of the sixteen logical ANDs that are formed by combining one of the four horizon-
tal with one of the four vertical variables, exactly one is true and the fifteen others
are false. The true combination indicates which neighhour configuration is realized.
These statements make up the first third of the loop beginning with DO 11 I=l,L in
our figure 2.

In the second part of that loop we calculate the logical AUD of each of these sixteen
combinations with the corresponding rule NR of that site; again of these sixteen ANDs,
only one is true and all others are false. The logical or arithmetic sum (OR or +) of
these sixteen ANDs thus gives the new value a. In the following loop 14 the old array N
is updated by the newly calculated values H, just as in the simple infection program.
(We are allowed to use arithmetic instead of logical sums here since only one of the
sixteen terms to he summed over is one and all others are zero. Normally in one-bit-
per-site multispin coding, neither additions nor multiplications are allowed since they
mix different hits.)

Also the other parts of the algorithm are similar to the infection program of fig-
ure 1. The loop starting with DO 1 K=i, 16 is new: here we select randomly for each
site separately the rule it wants to follow. Thus we go through all sixteen possible
neighbour configurations, and with probability P we select the rule that for this con-
figuration the centre spin should point up; otherwise it points down. We thus have
a random but deterministic mixture of all possible cellular automata. The last loop
16 determines how many spins point up, using the function POPCNT which counts the
number of up bits in a word. More interesting applications are discussed in our last
chapter. The speed of this program, on one Cray-YMP processor (L = 1280), was 235
updates per microsecond.

Additional speed-ups to 285 sites per microsecond are possible if all sites obey the
same rule, hut one program has to go through thousands of different cellular automata
rules in order to classify them. Then we perform the arithmetic sum in the last part
of loop 11 (figure 2) only over those neighhour configurations where the rule gives spin
up. Thus loop l! is divided into two parts; in the first part we calculate and store N i V ,

914

Figure 2. Kadfman program (disorderedmixtureof allcellular automata) for square
lattia. (H A Wisdunann speeded it up further to 260 updates per microsecond and
on a Crsy processor by defining 118, 12B, 138 and 148 not through the opposite
neighbours (i,j+1) and (i,j-l) but through the diagonal neighbours (it1.j) and
(i,j+l) ofsite (i,j), These four variable arestoredandreuaedforaite (i+l,j+l).
The vertical variables like 11V are no longer needed.)

N18, . . ., N48 for each site; in the second part an outer loop over the sixteen neighbour
configurations contains an innermost loop, executed only if the rule gives an up spin,
running over all sites. The corresponding program has been published elsewhere [lo],
and even a whole book has been devoted to such multispin coding methods [ll].

Computer simulations of cellular automata 915

2.4. Hydrodynamic cellular automata

Thus far each site carried only one spin; now we deal with six to eight bits needed per
site in connection with hydrodynamic cellular automata [12], also called lattice gases
in the literature. A complete description of a classical fluid would let each molecule
move under the influence of the forces the other molecule exert on it: molecular
dynamics with Newton’s law. Such simulations consume lots of hours and megabytes,
hut have been applied successfully to simple hydrodynamic problems [13]. Orders
of magnitude faster, and also less memory consuming, is the simplified algorithm
on the basis of complicated cellular automata. Molecules are allowed to travel with
unit speed along the nearest-neighbour bonds of the triangular lattice; they scatter
at integer times on the lattice site if another molecule is present there at the same
time. These scattering events preserve momentum and also (for some algorithms)
energy and angular momentum. Various programming methods have been published
in detail 114); we follow that of Kohring here, which is one of those storing 64 different
sites in one Cray word and using only logical operations.

The six directions leading to a given site are represented by six different bits stored
in six different computer words X i , X2, X3, X4, X5 and X6 (clockwise or counterclock-
wise). If the corresponding bit is one, an atom flies with unit velocity towards the
site on this bond; for a zero bit, there is no particle coming at this moment from this
direction. Thus the density can vary. Collisions of two, three and four particles are
taken into account; collisions resulting only in an exchange of particles (like head-on
collisions of two a t o m leading to reflection by 180 degrees) are ignored since we do
not keep track of the identity of the particles. (To study dispersion, this simplification
has to be avoided.) Figure 3 shows some of these collisions. In order to determine
if in a twc-body collision the direction of the outgoing atoms is rotated positively
or negatively compared with the incoming direction, a seventh bit is set initially at
random to represent positive or negative angular momentum. This angular momen-
tum determines how the direction of the outgoing particles is rotated compared to the
incoming direction; after such a collision the angular momentum bit is reversed.

Figure 3. Collisions in hydrodynamical cellular automata. The top velocities are
rotated into the bottom velocities.

TWD. and four-body collisions are impossible if at least one pair of opposite di-
rections has different status (e.g. if a particle is coming from the left but no particle
f:om the :ight). Diffexxt bits are f o u ~ d by ?he X!?. fxctio:: represextixg exc!usive=c;.
Three-body collisions require directions 1, 3, 5 to haye the same status and also direc-
tions 2, 4 , 6 to have the same status; again a positive XOR test destroys the possibility
for a three-body collision. Thus with purely logical bit-by-bit operations we find a
computer word COL telling us if a collision occurs. Again, COL stores 64 different sites,
and neighbouring sites are stored in different words, just as in our earlier examples.

With the help of the collision word COL, the angular momentum bit ABC, and the

916 D Slauffer

incoming particle directions Xi, . . ., X6 we now can determine the outgoing directions
Yl, Y6. For example, after a collision we have Y3 = X2 or = X4, depending on the
angular momentum bit, whereas Y3 = X3 if no collision happened. The expression

Y3 = (X2.AUD.COL.AUD.MIG)t(X4.AND.COL.AUD..UOT.ABC)t(X4.AND..NOT.COL)

takes into account these mutually exclusive collision possibilities. Having thus calcu-
lated the outgoing velocities Yl, . . ., Y6, the program then transfers the Y information
about outgoing atoms into the new X variables for incoming atoms at the correspond-
ing neighbour site; also the angular momentum bit must be reversed wherever a col-
lision occured. One NEC-SX3 processor updated about 500 sites per microsecond
with Kohring’s FOmTRAN program [14], whereas for all 65536 processors together of
a Connection Machine the speed was about twice as high (assembler programming,
Bhogosiao [1”1).

3. Simulation results

3.1. General classification

Wolfram [Z] made the first systematic classification of one-dimensional cellular auto-
mata, and that classification can be regarded as the starting point of the scientific
investigation of cellular automata in general, as opposed to studies of specific examples.
Thus we start here with a short report on how to classify automata in two and three
dimensions [17].

Wolfram distinguishes four classes according to the asymptopic behaviour after
very long times: in class 1 the spins end up in a fixed point and are all parallel,
limit cycles with short periods are observed in class 2, the chaotic class 3 has infinite
periods, and propagating structures are seen in class 4. To make such a classification
programmable in an automatic computer search for thousands of different rules, we
need precise and mutually exclusive criteria replacing Wolfram’s general concepts. We
divide the Wolfram classes 1 and 2 into subclasses. In this way five groups can be easily
identified, with the sixth group containing all rules with non-identified asymptotic
behaviour.

Group 0: fixed point with all spins down
Group 1: fixed point with all spins up
Group 2: fixed point with some spins up, some spins down
Group 3: oscillations of period two between all spins up and all spins down
Group 4: oscillations of period two with some spins up and some spins down
Group 5: all other behaviour.

Initially we set randomly half of the spins up and half down, and use large lattices
the length of which is not exactly a power of two (since powers of two lead to special
behaviour).

Results are available for chains (two neighbours), honeycomb (three neighbours),
square (four neighbours), triangular (six neighbours), and simple cubic (six neigh-
bours) lattices [17]. The larger the number of neighbours, the larger the fraction of
rules belonging to the ‘unidentified’ class 5. For six neighbours, only one per cent of
all rules fit into classes 0 to 4; of course, one per cent of 264 is still a huge number of
rules. Of the 16 one-dimensional rules, on the other hand, two each belong to classes

Computer simulations of cellular automaia 917

0, 1, and 4. On a square lattice, the percentages for classes 0 to 4 are 2.8, 2.8, 0.1,
0.7, and 2.1. (A large class for two to four neighbours with 16 per cent on the square
lattice are the rules which lead to translations of the whole configuration; however,
that class partially overlaps with oscillations of period two, if the spin configuration is
checkerboard-like on a square lattice. Reference [21] speculates that Wolfram’s class
4 quite generally might be class 2 with long transient behaviour.)

Quite similar is the situation if we cheEk for stability against small perturba-
tions [la]. In politics i t is difficult to find out if one single decision (e.g. the selection
of a presidential candidate) later leads t o an observed result (e.g. the loss of the elec-
tion). Computer scientists have i t easier to investigate such relations between cause
and effect: they simulate the system twice, once with the suspected cause and once
without it, and then later compare the two resulting configurations to find the true
effect of that cause.

Thus we start from two lattices obeying exactly the same rules and having ex-
actly the same initial configuration; only on one site or along one lattice line, the spin
or the rule is changed in one replica compared to the other. Then the simulation
proceeds, and we compare site-by-site the resulting configuration to see how this ini-
tial ‘damage’ spreads later. Such damage spreading questions are very traditional in
classical mechanics where an energy minimum corresponds to stability (damage dies
out due to friction) and an energy maximum to instability (damage increases, often
exponentially). Chaotic systems have the damage spreading over the whole lattice;
for example, an apple dropping in a Californian orchard later changes the weather all
over Europe, and even modifies much later the decay of the solar planetary system
if the latter is chaotic. In this sense we call cellular automata stable, unstable, and
marginal depending on whether the initially localized damage dies out, spreads over
the lattice, or goes neither to zero nor to infinity. (Spreading over the lattice is usually
measured by checking if the damage ‘cloud’, the set of sites different in a comparison
of the two replicas, has touched the boundary of the lattice far away from the initial
perturbation.)

Simulations [I71 show that in chains, honeycomb and square lattices, about 60
per cent of all rules are unstable; for six neighbours that percentage increases to 98.5.
Thus the more neighbours one has to deal with, the more chaotic is life.

8.2. Q2R fermmagnetism
Apart from hydrodynamic cellular automata, the most studied single rule [19] pre-
sumably is Q2R. A spin is flipped if and only if it has as many up as down neighbours.
These cellular automata give the spontaneous magnetization of the king model, ac-
cording to present numerical knowledge. The condition for flipping spins means that
the Ising interaction energy is not changed by a spin flip; thus Q2R is a microcanon-
ical Ising model simulation, complementing the traditional canonical (Kawasaki) or
grand canonical (Glauher) simulation methods for king magnets. In contrast to ear-
lier hopes, it is not a particularly efficient way to find lsing properties, but instead it
is useful for teaching and illustrates quantitatively certain basic ergodicity and irre-
versibility problems of statistical physics.

We can simulate Q2R by going sequentially or randomly through a lattice and
flipping a spin if its number of up neighbours equals the number of down neighbours.
Then the energy, measured through the number of antiparallel neighbour pairs, is con-
stant, If instead we use simultaneous updating as is customary for cellular automata,
we have to be more cautious. Imagine, for example, a very long chain where all spins

918 D Staufer

except those a t site 102 and 103 are up; spins 102 and 103 are down. Thus we have
two broken bonds (antiparallel neighbours), between 101/102 and between 103/104.
If we would update the spins sequentially, i.e. first spin 1, then 2, etc, we would flip
101 and 102 and still end up with two broken bonds: energy conserved. Simultaneous
updating, however, means that spins 101, 102, 103, and 104 are all flipped at the same
time since they ‘do not yet know’ tha t their neighbour is flipped, too. Then we end
up with two isolated down spins 101 a i d 104 and four instead of two broken bonds:
energy increased. Therefore in Q2R automata energy conservation has to be restored
by dividing the lattice into two sublattices, like even and odd spins, in such a way
that spins on one sublattice are neighbours only to spins on the other sublattice. Thus
one time step means that we first update one sublattice simultaneously, and then the
other sublattice simnltaneously. In the above example, after updating the odd spins
we have flipped 101 and 103, and then the even spins 100 and 102 are flipped. The
whole iteration thus leads to a pair of down spins at sites 100 and 101, surrounded by
up spins: two broken bonds as before, and energy is conserved.

The model is not ergodic, i.e. even if we wait infinitely long we do not get through
all possible states with the same energy. That number, with roughly half spins up,
varies as 2 N / f i for a system of N spins. Q2R is a reversible rule, and thus after
a certain time the system returns to its starting Configuration, after which it repeats
again and again the same time development: ‘limit cycle’. If the period of that cycle
would be of the order 2 N , ergodicity would be ensured. Simulations gave [20], how-
ever, a median limit cycle period varying only as 2N/4. Thus even if we start from
a random distribution, corresponding to infinite temperature, we go only through an
exponentially small fraction of the available phase space: no ergodicity. Neverthe-
less the spontaneous magnetization comes out correctly as in the king model. Thus
ergodicity is not needed to get good results.

(For comparison with king results we start from a random configuration with a
concentration p of up spins. The thermal energy or number of broken bonds is then
proportional to p(1 -p), The temperature, on the other hand, can be found from this
energy by traditional Ising model calculations. In this way, the Curie temperature of
the square lattice corresponds to a concentration p of 7.955 18 per cent.)

Because of the reversible nature of the spin flip rule we see a similarity to New-
ton’s law of motion, where also no time arrow is preferred: flipping Q2R spins or
letting billard balls collide is a reversible process. Nevertheless, molecular dynamics
simulations of many particles lead to irreversible relaxation into an equilibrium, and
simulation of Q2R automata also lets the magnetization relax towards its Ising equi-
librium value. How is this contradiction solved: the period after which Q2R returns
to its initial configuration increases exponentially with N, though not as 2 N . And
for N = loz4, the period 2N/4, is much longer than the age of the universe. However,
for small systems, particularly for p below 0.5, the return to the initial random d i s
tribution is easily observable [20] because of the discrete nature of cellular automata
and the lack of any rounding errors which plague molecular dynamics studies. Thus
for small systems one can study explicitly that the second law of thermodynamics is
violated; it is an approximation valid only for large systems.

In other aspects Q2R is a good teaching tool: its simulation requires little knowl-
edge of traditional physics like probabilities proportional to exp(-E/kT). It can be
studied on powerful pocket calculators and gives then a spontaneous magnetization
for low enough p.

Problems occur only if one desires great accuracy; then one realizes that relaxation

Computer simulations of cellular automata 919

to equilibrium is very slow for p below the Curie point concentration (8 per cent for
square lattice). We can quantify this non-critical slowing down by starting from a
random configuration of concentration p and by measuring the time r after which the
actual magnetization reaches the midpoint between the initial magnetization 2p- 1 and
the final Ising magnetization. This time does not diverge for ordinary critical slowing
down. For Q2R on the square lattice, our data in figure 4 show for decreasing p first a
maximum of r near the Curie point of p = 8 per cent, followed by a minimum of r N

lo3 near 7.6 per cent, and then for decreasing p the relaxation time T increases rapidly
to reach 4 to 5 million at 5 per cent. (This interval in concentrations corresponds to
temperatures a few per cent below the Curie temperature.) A Vogel-Fulcher law like
for glasses would predict

o(econstl(P--P,)

and indeed figure 4 at first suggests such a behaviour with po near 3 per cent. Closer
inspection, however, indicates a possibly s-shaped curve, instead of a straight line, for
the data plotted in figure 4, and thus tliis apparent dynamical transition at 3 per cent
may be shifted downwards to lower concentrations, perhaps to p = 0.

. 1 4 I n , , n , , , , , , , , , , ,

ti+++
++

P
Figure 4. Relaxation time T against initial concentration p for Q2R on the sqnare
lattice. We plot l / l n (~) againat p.

Such effective phase transitions, which shift slightly towards p = 0 (or p = 1) if
the computing effort is increased exponentially, are also known from bootstrap perco-
lation [E], where a threshold may go to zero with some negative power of the log(N)
only. Similar to the above-mentioned problem with the second law of thermodynam-
ics, it may then physically be more relevant to study the effective transition at a finite
po than the mathematically exact limit for infinite times or systems. Obviously, times
and sizes larger than those of the universe correspond to sound mathematics but not
to good physics: for a physicist, the logarithm of infinity is below 100.

Other criteria have also given effective transitions near a few per cent initial con-
centration of up spins; some of these transitions seem to vanish logarithmically while
others do not [22]. No clear picture has yet emerged. From the practical point of view
it is remarkable that the slow relaxation into equilibrium at low p can be avoided if
one starts with a normal Ising model simulation (Glauber-Metropolis) and lets QZR
run only after equilibration [23].

920 D Staufler

From the technical point of view, Q2R was one of the first cases where the one-
bit-per-site technique was applied (Herrmann IS]). If the four computer word I , J , K , K
contain the four neighbours of a site (with 64 sites in each of the 64 bits), then

((I.XOR.J).AND.(K.XOR.K)) .OR. ((I.XOR.K).bND.(J.XOR.K))

is the condition to flip the centre spin. A fully vectorized program reaches 1.7 up-
dates per nanosecond on one Cray-YMP processor, with the program published else- ... L..-,. mi "- ~ -:.....ix~~-- -c ".. ___"__ 9- __--___
nllrlr LA', aa n u'LLlp"'Lc*.y1u" U, l l r l l I I I * L L L L I D p L U (j l n 1 r r .

9.9. Hydrodynamic cellular automata

The hydrodynamical methods described at the end of the first section have been
applied to a variety of two-dimensional flow problems, and generalized to more com-
plicated models and to three dimensions. On the fundamental side, the viscosity of
two-dimensional fluids was shown numerically [25] t o diverge logarithmically with sys-
tem size, as predicted theoretically long before. In this sense the cellular automata
approach is superior to the application of Navier-Stokes equations since there one
assumes the existence of a finite viscosity. On the other hand, very large velocities
(large Reynolds numbers for turbulence) cannot be treated correctly by the automata
method.

For low velocities, the flow through porous media seems to be a good field of
application [ZS] where traditional methods work less well. If the open pore space is
no longer geometrically connected, then no flow is possible at all; however, already
far away from this percolation threshold, the tortuosity of connected paths of pores
is so high that the hydrodynamic permeability is strongly reduced compared to that
in free flow. (The permeability basically is the ratio of hydrodynamic current to
pressure gradient according to Darcy's iaw.) For specific well defined geometries,
good agreement of laboratory and computer experiments was obtained.

In three dimensions, asimple cubic lattice does not work well, and instead normally
a projection of a four-dimensional face-centred lattice is used [27]. Nevertheless, speeds
of 30 to 40 updates per microsecond on one Cray processor were obtained. However,
realistic applications to the flow of oil through a porous medium are quite difficult. If
we require the sand grain radius to be at ieast hundred times bigger than the moiecuiar
size (lattice constant) and at least ten times smaller than the channel width, then we
need lattices at least of size 10003 and thus computer times three orders of magnitude
above present typical simulations. Future 'teraflop' machines would have here a nice
field of practical applications, since they cost about us much as a single offshore oil
drilling attempt.

i n e above simuiations worked with one type or' moiecuie. Two-iiuid modeis have
also been studied [28], to simulate oil-water mixtures or spinodal decomposition. We
refer to a recent conference for more details and applications 1291.

-.

4. Biologically motivated cellular automata

4.1. Kauffman model

The Kauffman model was invented [30] to simulate the interaction of biological genes.
Humans have of the order of N = lo5 different genes; these genes are the same in each
different cell of our body. However, genes can be turned on (spin up) or off (spin down)

Computer simulations of cellular automata 921

according to interactions between them. In total this leads to ZN possible different
genetic setups. In reality, we have only of the order of 1000 different cell types, and a
good model should explain why only one thousand of the huge number of possibilities
are realized.

Living beings differ from Intel 860 chips in that they are not mass-produced in
automated factories. Thus the interactions between different genes should be much
more random than between computer parts. Kauffman [30] thus aasumes that each
gene seiecis randomiy which oi the many pogsibie ruies for ceiiuiar automata it wants
to obey. If each gene is influenced by I(= 4 neighbours, then we have 216 = 65536
possible rules, and thus most of the N = lo5 genes can follow a different rule each.
Once selected randomly, these rules are fixed forever, and thus the system ends up in
limit cycles. Kauffman identifies the different limit cycles a system can have with the
different cell types your body or mine has (brain cells, fat cells, . . .) and finds their
number io increase oniy as viv 101 Tf inieracting genes, as desired.

Mutations are random changes of a gene or of a rule by which the gene is influenced:
A mutation that changes the whole genetic setup and e.g. changes a computational
scientist into an exact mathematician is called a catastrophic mutation; biologically
useful mutations have much less drastic effects. This question of the influence of
mutations is just our ‘damage spreading’ of the general classification; in fact, Kauffman
seems to have introduced that question into biology long before physicists have studied
it. (Statistical physics normally deals with averaged quantities like the density, not
with particular configurations as needed for damage spreading studies.)

Most of the early work on the Kauffman model dealt with an infinite range of
interaction, as seems relevant biologically [31]; then each gene selects randomly which
K out of the N - 1 other genes will influence its behaviour. Some sort of mean-field

large K the system is unstable against damage spreading (catastrophic mutations),
for small K it is stable, and K = 2 is the border case.

More relevant to cellular automata are simulations of the Kauffman model on a
lattice with nearest neighbour interactions. Then on a square lattice each site only
selects which of the 65536 possible rules it wants to obey; the neighbours are already
fixed by the !attic? stroctore. !E one dimexion znd .!so GI! the honeycomh !&?ice, ?he
system is always stable against mutations whereas for the square, triangular, cubic
and four-dimensional hypercuhic lattice, catastrophic mutations are possible where
the damage spreads over the whole lattice [33]. A program for the square lattice was
described in subsection 2.3.

The probability for damage to spread can be reduced to zero by introducing a
new parameter p, which here is no longer the initial concentration of up spins hut
the probability of selecting a rule with the result: spin up. More precisely, during
the initialization we select a new site to get its spin orientation and its rule. First
by calling one random number we determine if the spin is up or down. Then we
go through all possible neighbour Configurations, 16 for the square lattice (I f = 4
neighbours), draw a new random number between 0 and 1 for each, and select for this
neighbour configuration the result spin up if the random number is smaller than p;
otherwise the result shall he down. Having dealt in this way with all (16) neighbour
configurations, we have finished the determination of the rule for this one site. Then
we jump to another site.

Obviously, p and 1 - p are statistically equivalent, and we ignore p > 1/2. For
p = 0 after one iteration all spins are down and remain so forever. Thus p = 0 makes

G r

t h e q [,2] becalxs exac? :er i-fi-ite ra-ge irite:actie::s i:: i-fi-ite!y !a:@ system: Fc:

922 D Stauffer

the system stable against damage spreading, even if at p = 1/2 (the unbiased case we
started with) damage could spread. At some threshold between 0 and 1/2 therefore a
transition to unstable behaviour can occur. Life in this sense requires a p below the
threshold p, to unstable behaviour.

Numerical estimates for p , in the square lattice were plagued by strong finite-size
effects and changed over three years [34] from 0.26 to 0.31; for size 6976 t 6976 the
effective threshold was near 0.305. The estimates p , = 0.16, 0.12, and 0.08 for the
I - : "_-__ I - - -:_-I- -..L:- --J L L:- I . . .~ : - - - r w i .._..:_ _.__ l_l..:. u r - n g u i a , ~ I I L I ~ L C GYYLC auu n y p c r ~ u u ~ w w w a ~ a a j irrrry DUI cviiiaiii ~yaser r ia i ic errvrs
since there the lattices sizes were smaller than in the square lattice.

The threshold p , to unstable behaviour seems to be a second-order phase transition
with critical phenomena: the probability that from a single damaged site in the lattice
centre the damage spreads to the lattice boundary is zero below the threshold, non-
zero above it, and goes to zero continuously if the threshold is approached from above.

of damaged sites at the moment the damage touches the boundary varies as LD in a
lattice of linear dimension L; the time the damage needs to reach the boundary varies
as LD'. On the square lattice, D is about 1.9, roughly compatible with the percolation
fractal dimension [34], whereas D' is about 1.3. For other lattices we refer to [33].
Again, these other estimates may be less reliable since the square lattice estimates

algorithm, a nice example of the need for supercomputing.

cellular automata of a more complicated kind [35].

4. Z. Immunology

there no phase transitions with critical phenomena have been found. The biological
relevance of the cellular automata approximation is still controversial in this field where
traditional descriptions mostly rely on first-order nonlinear differential equations as
known from population dynamics. Nevertheless the application of statistical physics
(percolation) ideas to immunology has a tradition of nearly 40 years [36].

!f :ye get inkenza in ane :,:inter it is nn!ike!y we get the same sickness again in
the same winter: we have become immune against this disease. Smallpox vaccination
is one of the major successes of immunology. Many cell types and molecules play
an important role in the immune response. Antibodies (A) come from bone-marrow
derived lymphocytes (B) and neutralize the virus or other antigen (V), helper cells H
and suppressor cells S regulate the immune response in a positive or negative way,
ki!!er ce!!s !! z sy st t ick the cwn b d y , inter!eukiE ms!ecc!ea I me&& !he connecticn
between E and S, the AIDS virus D destroys the immune system, etc. Antibodies
roughly correspond to one antigen like lock and key, and one may find a second type
of antibodies which regard the first one as antigens, and so on in Jerne's network of
lock-and-key relations. The review collection Theoretical Immunology [37] gives an
overview over the different aspects and approaches of this field.

The KIJT mode! [3R] p r e s ~ ~ & ! y wm the first, ce!!u!ar ai~tomata description of the
immune response; a larger variety of models was investigated only after a publication
in, of course, J. Phys. A ; Math. Gen. [39]. In all these cellular automata approxima-
tions, the concentrations of various cell types can be either high (spin up, true, 1)
or low (spin down, false, 0). The interactions between the various cell types can be
defined by Boolean relations, like S = S .OR. E, meaning that at the next time step

'Ph.." -:-I.+ -1 4h.. +h-.-h-IA C---&-I h..I.....: fC-:+--:..Ao....l:--\ -A- :- TI.* LA-
I.&"" LL(jLl" _" Y I L C " . . lnII"I", L L L . C Y _ L Y c L I - . I " " L \'LL.L"C DlYC c,c- 'LL, ,6 , D S Y D ,U. lllr ,,"LLL"CL

fer E incremed f:em 1.5 ta 1.9 with the z.v-ai!&i!it;. nf bette: eam-pnte:s znd beite:

Finally we mention that the Kauffman model is related to neural networks and

N- -..-I -..--_"-I_.. +:_- h-- h--- -..-Ad -- C-- $--: --..-- l--:n..l "--".. I..+:---
I." L C a A ~ " p " L ' u L " p Y Y L " 6 U- "Cri l l L l r r Y r " nu I-, ,U, L"LL"UL.U,Ug,LaL 0prL"rmul" lLr DLLILT

Computer simulations of cellular automata 923

the concentration of suppressor cells is high if and only if before there were lots of
suppressor cells or lots of helper cells present. Sometimes an analogy is helpful which
identifies the logical AND with a multiplication (*) and the logical OR with an addi-
tion (+). The MOT function (negation) is symbolized by a bar on top of the symbol.
Then E . O R . (V .AND. .NOT. S) is written as E + V + S , using that multiplication has
precedence over addition.

With this arithmetic notation of logical relations, the KUT model for normal im-
mune response [38] with some simplifications [40] reads for antibodies A, suppressors
S, helpers E, B cells B, and virus V:

A = V * B * E S = E + S H = E + v * S B = H + (v + B) v = v + i .

The initial condition is defined by the five spins A, S, E, E, V; thus 25 = 32 different
initial conditions are possible and are best dealt with by a very simple computer
program. Each time step corresponds to lo2 hours in reality; thus in contrast to fluids
and magnets, here computers really beat nature in speed.

As a result we find five fixed points for the variables (ASEBV): (OOOOO), (OllOO),
(OlllO), (01000) and (01001). The first case is the naive state where no immune
ieaction has ever happened. The second and third fixed point correspond to the
vaccinated or immune state; adding a virus V to these states will quickly lead back
to the immune state (01110) where the virus is again destroyed. This is not the case
for the fourth fixed point (01000) where an addition of virus leads immediately to
the fifth fixed point (01001). Thus for these last two fixed points the body is not
protected against infection: the virus or other antigen stays on.

In autoimmune diseases like multiple sclerosis or diabetes mellitus, killer (effector)
cells K of the immune system attack the own body as if that would be an antigen. For
the simplest three-cell model involving X, E, and S only, Chowdhury 1401 let a computer
search through all 3’ = 19683 possible models with positive, negative or missing
interactions (including self-interactions) between the three cell types. Applying further
constraints, like that helper cells should not suppress, the computer gave just one
model:

S = E E = E + K K = K + E + K * E * S

which gave the desired fixed points (SEX) = (000) (healthy), (110) (immune), and
(ill) (sick). Also fivecell models for autoimmunity were invented [39-411, which may
be more realistic biologically.

Several AIDS models were studied [42,43] where the HIV virus, abbreviated as D,
destroys the helper cells (or T4 cells) of the immune system. The last model [43] uses
interleukin molecules I as messengers from helper cells H to cytotoxic cells S:

S = I E = I + E I = E D = H + S .

This dynamics gives for (SHID) the fixed points (0001) and (1111) as well as a n
oscillation ofperiod two between (1101) and (0011). In the first fixed point, the virus
D has completely destroyed the immune system, and the body will succumb to some
normally not deadly disease like pneumonia. For the other states, the virus never
vanishes but the immune system is still fully or partially present; these states could
correspond to the many years of latency (correponding to about lo3 iterations) after
an infection with the AIDS virus before the full sickness breaks out.

924 D Stauffer

However, the model does not allow for these metastable states to decay after
thousand iterations to the true fixed point (0001). To allow such decay, the interleukin
production I was allowed to fail with a low probability p, and then after strongly
fluctuating times of the order of i /p the final fixed point (0001) was always reached.
Similar results were obtained when these logical equations were replaced by differential
equations. (The decay of the metastable state through some assumed low probability
may look somewhat ad hoc. There are cellular automata like Q2R which by themselves
give very iong reiaxation times; see above. iiniortunaieiy in none oi the deterministic
AIDS known to me were such long relaxation times found, not even on a lattice.)

Cancer cells evade the immune system, perhaps by omitting or changing the cell
surface antigens which are recognized by the killer cells K of the immune system.
Thus a tumour cell T is assumed [44] to be in one of three states: with the normal
surface antigen (T i) recognized by the killer cells, with a changed surface antigen (TZ),
or without any such surface property (TO). The model repeats for the antibodies,
suppressors, helpers, and B cells the equations of the KUT model above, and adds for
the killer and the tumour cells:

K = T i * E * S T O = T O * m

T i = T i * A + E + B + K + T O + T 2

A simple program going through all 256 initial states of this eight-cell model is given
in figure 5; the reader can easily change the interactions or even reduce the number of
different cell types, now eight. This simulation gives eleven fixed points of which two
have no tumour cells whereas in the nine other fixed points the tumour cells survive
and thus proliferate.

In a similar spirit, a unified model [45] tries to combine normal immune response,
autoimmune diseases, and AIDS. We start again from the usual KUT model with A ,
S, E, B and V, where V now corresponds e.g. to pneumonia. To this model are added
killer cells K attacking the ‘own’ body 0, and AIDS virus D. The dynamics is defined
through

T 2 = (T 2 + A + E + B) *-.

A = V * B * H s=K+s a = [(v + o) * S + i i j * B
B = H * (V + B) V = V * I K = 0 * E * S.

Without AIDS and autoimmune problems, when D and 0 are absent (false), we recover
the standard K U T model; presence of 0 may cause attacks from the killer cells, and
the AIDS virus D immeditely destroys the helper cells.

All these models are mean-field approximations in the sense that one concentration
for one cell type is valid for the whole body. No geometry was involved. The other
extreme is lattice models [7,40-5] with nearest-neighbour interactions, where at each
lattice site we repeat the above model, and let neighbouring lattice sites interact with
logical OR. Presumably the mean-field approach is good if the immune response is much
slower than the spread of a cell type through the system, whereas in the opposite limit
the lattice model is bettcr. The truth may be in between, though closer t,o mean field.

For such lattice models, one Cray-YMP processor typically updates slightly more
than one cell per nanosecond, and lattices with more than hundred million sites were
studied, using one-bit-per-cell methods similar to the other cellular automata. We
just have to replace t by .AND. and + by .OR. when we translate the above immunity
equations into FORTRAN. The program for cancer then looks similar to figure 5. These

Computer simulations of cellular automata 925

C 8-CELL GENERAL IIDNNOLOCY PROGRAM
2 CELL TYPES: l=~HTIBODY,Z=SUPPRESS3a.3;HEL?ER,~~E-CELL,
C S=K=KILLER 6=TO 7=T1 8=T2 (3 TYPES OF T=TJHOR)

P I R I W F T V P I lur-a dAX;nO(. ...
LO1
DO

I
6

I

C HERE SI

I IT
N

51 I)IT N 6 - IT0

2

\..- __,
XCAL N(NC) ,M(NC) .IA,IS,IR.IB,IK,ITO ,IT1 .IT2 ,IDUH,FF

)O 6 K-1 N6 1 INDEX-0 255

M(K) -R~IFT(INDEX, K- 1) .AND. 1

'ECJF!C MODEL OF NC DIFFERENT CELL TYPES - IT1.AND.IB.AND.IH
= IH.OR.IS
= (IT1.AND. .NDT.IS) .OR.IH

l.OR.IB).AND.IH
1 .AND. IH .AND. .NOT. IS)
.AND..NOT.(ITl.OR.ITZ)

;{:I 1 (IT2.OR.IDUM) .AND. .NOT. (IT0 .OR. IT1)
FP= .TRUE.
DO 2 K=1 NC

IDUH - 1H.OR.IB.OR.IA
ITl.AND..NOT.(IDUM.OR.ITO.OR.IT2.0R.IK)

~- FP=FP:~ND_. .. .EPV.M(K))
"U , h=I,NL

7 M(K)-N(K)
8 IF(FP) GOT0 9

PRINT 100, INDEX
9 IFIX=O

DO 4 K=1 NC
4 IF(M(Kj) IFIX=IF:
1 IF(IT.LE.MAX) PRIN:
100 FORMAT(lX, 318,8L3)

END

[X+Z**(K-l)
r 100. INDEX,IFIX,IT.M

Figure 5. Cancer progc- for immunology (one site only)

lattice sizes already approach the order of magnitude of a real immune system, and
still allow a simulation much faster on a supercomputer than in reality. However, the
biological significance of such lattice models is not clear at present.

Of course, the biological significance of the whole cellular automata approach to
immunity can also be questioned: a true cell concentration does not jump between 0
and 1 only. But that does not yet mean that this Boolean approximation is wrong. For
example, t he Earth is certainly not a point mass but nevertheless can be approximated
quite well by a point if we discuss Kepler's laws. The hydrodynamic cellular automata
are also unrealistic but nevertheless useful. And similar t o hydrodynamics, it may take
many years before the right modification of the cellular automata approach is found
which gives a good model for immunity.

Acknowledgments

We thank H J Herrmann for suggesting this review, which was necessarily biased and
incomplete.

References

[I] Kohring G A 1990 hf. J. Mod. P h p C 1 259
[z] Wolfram S 1983 Rev. Mod. Phys. 55 601; 1986 Theory and Applications of Cellular Automata

ed S Wolfram (Singapore: World Scientific)

926

131

[41
[51
161

[91
I101

1171

I181

1301

[33j

D Sfauffer

H Gutowitz (ed) 1990 Ccllular Automata: Theory and Ezpcrimrnt (Physira 45D)
Weisbuch G 1989 Dynomigue dea Syrtrmcs Compfrzea (Park: Editions de CNFS) (Engl. transl.

StaufTer D 1991 Computcrs in Phys. Jan/Feb issue
Toffoli T and Margolus N 1987 Ccllulor Automata Machines (Cambridge, MA: MIT Press)
Friedberg R and Cameron J E 1970 J. Chcm. Phya. 52 6049
Hardy J, de Pazzis 0 and Pomeau Y 1976 Phy.. Rev. A 13 1949
Jacobs L a n d Rebbi C 1981 J. Comp. Phys. 41 203
H e r r " H J 1986 J . Sfat. Phys. 45 145
Dayan I, Stauffer D and Havlin S 1988 J. P h p . A: Math. Gen. 21 2473
Manna S S, Stauffer D and Heermann D W 1989 Phyaicn 162A 20
Adler J 1991 Physic& A
ds Silva L R and H e r r m a ~ H J 1988 J. Slot. Phys. 52 463
StaufTer D 1990 Computer Simulation Stlrdica in Condensed Matter Phyaicr I I e d D P Landau,

de Oliveira P M C 1990 Statiatieol Physics and B o o l t ~ n Networka (Singapore: World Scientific)
h i s& U. Hasslscher B and Pomeau Y 1986 Phya. Rev. Lett. 56 1505
Rapaport D C 1987 Phys. Rev. A 36 3288; 1988 Comp. PAya. Rep. g 1
Hayot F, Mandd M and Suddayappan P 1989 J . Comp. Phys. 80 277
Brosa U and Stauffer D 1989 J. Stat. Phya. 57 399
Gunstmsen A 1989 MIT report unpublished
Kohring G A 1991 J. Stat. Phys. 63 (1)
Bhogosian B M, Taylor IV W and Rothman D H 1989 Proc. Stlpcmompufing 88 vol I1 ed J L

Gerling R W 1990 Preprint Mathanatisch Nsturwissens&haftlicher Unterricbt 43 451
Zabolitdq J L and Hemnann H J 1988 J. Comp. Phys. 76 426
Duke D and Sandee D 1988 Supertimes

Gerling R W 1990 Physica l62A 196
Burda 2 , Jurkiewicz J and Flyvbjerg H 1990 J . Phys. A : Math. Gen. 23 3073

Derrids B and Pomeau Y 1986 Europhys. Lett. 1 59
Costa U M S 1987 J , Phys. A: Math. Gen. 20 L583
Stanley H E, Stsuffer D, KertCsz J, and H e r r " H J 1987 Phys. Rev. Lett. 59 2326
Denida B and Weisbuch G 1987 Europhya. Lett. 4 657
Lang W and Stauffer D 1987 J. Phys. A : Math. Gem. 20 5413
Moukanel C and Parga N 1989 J. Phys. A: Math. Gen. 22 943
Schulte M, Stidelhagen W and Demrne E S 1987 J . Phys. A: Moth. Gen. 20 L1023
Gallas J A C and Herrmann H J 1990 Inf. J . Mod. Phys. C 1 181
Glotzer S C, StaufTer D and Sastry S 1990 Physico 164A 1
StaufTer D 1990 J. Phya. A: Math. Gen. 23 1847
Moukanel C 1989 J . Phys. A: Moth. Gen. 22 4493
Stauffer D 1991 Fractal and Disordered Systems ed A Bunde and S Havlin (Berlin: Springer)
KadanoffL P. McNamara G R a n d Zanetti G 1989 Phys. Rev. A 40 4527
Balasuhramian K. Hayot F and Saam W F 1987 Phya. Rcu. A 36 2248

Chen S, Diemer K, Doolen G D, Eggert K, Fu C. Gutman S and Travis B 1990 Pieprint
Brosa U 1990 J. Physique 51 1051
Sahimi M and Stauffrr D 1991 Chcm. Eng. Sci. in press
Kohring G A 1991 Preprint
d'Humieres D, Lallemand P and Frisch U 1986 Europhys. Lcff . 2 291
Rothman D H and Keller J M 1988 J . Sfat. Phya. 58 375
n__,__ r. ,-.I, 3 0 0 " D I _ . . : _ _ r c n ID-^- tJlT" *d.."^^.l a...... r IN"d..&"- .̂. r"<,;". C". y"",s,," ,=", ,.Y'.L"l"" ,' ,".. I .m1Y " Y Y Y I . C C U '.C.I"Ill. . rY . " ' .YY 1.1 "...l.-l -".

Methods for PDE'r)
Ksuffman S A 1969 J. Thcor. B i d . 22 437
Keller U, Thomas B and Pohley H J 1988 J . Stat. PAys. 52 1129
Derrids B and Weisbuch G 1986 J. Physique 47 1297
StaufTer D 1987 Phil. Mag. B 56 901

1991 Complcz Syatcm Dynamics (New York: Addison Wesley))

K K Mon and H B Schiittler (Berlin: Springer) p 26

Martin and 3 F iundsirom (Xew i'ork: iEEE Computer S0c.j p 34

(Newsletter of the Supercomputer Computations
Research Institute. Florida State University)

Strl,ffer D 1890 J ; P h p : A I Math , Gen. 23 s.-.

Rothman D H 1988 Geophy.. 53 509

[361

I371

Computer simulations of cellular automata 927

de Arcangelis L 1987 J. Phys. A: Math. Gen. 20 L369
Hansen A 1988 J. Phys. A : Mofh. Gen. 21 2481
Hansen A and Roux S 1989 Physieo l6OA 275
SlBd%r D 1989 Physiea 38D 341
Kikten K E 1988 J. Phys. A: Maih. Gen. 21 L615; 1990 Dynamics and Memorg in Random

and Siructard Neural Neiworts (invited lect- e t British Neural Network Society. April
1990)

Goldberg R J 1952 J. Am. Chem. Soc. 74 571
Perelson A S 1989 Immunological Re". 110 5
Perelson A S (ed) 1988 Thconfical Immunology Parts I and I1 (New York: Addion Wesley)
Kad- M, Urbain 3 and Thomas R 1985 J. Theor. B i d . 114 527
Weiribuch G and Atlan H 1988 J. Phya. A: Mnfh. Gen. 21 L189
Kivlen K E 1988 J. Stat. Phya. 52 489
Chowdhury D and Stauffer D 1990 J. Sfaf. Phyi . 59 1019
Neumann A U 1989 Phynica 1 6 2 A 1

Pandey R B 1989 J. Siof. Phya. 54 997; 1990 J. Sfoi. Phya. 6 1 231; 1990 J. Phyr. A : Math.

Kougias C F and Schulte J 1990 J . Siaf. Phya. 60 263
Sieburg H B, McCutchan J A, Clay 0 K, Cabalerro L and Ostlund J J 1990 Physica 4 5 D 208
Pandev R B and StaufIer D 1990 J. Stat. Phvs. 61 235

cdie.1: E 8r.d At!.%? B ?989 L Ar:simmr%i:g 2 Cl3

Gcn. 23 3421

Pandey R B 1991 Ppeprinf
Chowdhurv D, Sahimi M and Staufkr D 1990 J. Theor. Bid. to be published
Chowdhuri D, S t a d e r D and Choudary 1990 J . Theor. Rial. 145 207

